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Formal GAGA for good moduli spaces

Anton Geraschenko and David Zureick-Brown

Abstract

We prove formal GAGA for good moduli space morphisms under an assumption of
“enough vector bundles” (which holds for instance for quotient stacks). This supports
the philosophy that though they are non-separated, good moduli space morphisms
largely behave like proper morphisms.

1. Introduction

Good moduli space morphisms are a common generalization of good quotients by linearly re-
ductive group schemes [GIT94] and coarse moduli spaces of tame Artin stacks [AOV08, Defini-
tion 3.1].

Definition ([Alp09, Definition 4.1]). A quasi-compact and quasi-separated morphism of locally
Noetherian algebraic stacks φ : X → Y is a good moduli space morphism if

– (φ is Stein) the morphism OY → φ∗OX is an isomorphism, and

– (φ is cohomologically affine) the functor φ∗ : QCoh(OX )→ QCoh(OY ) is exact.

If φ : X → Y is such a morphism, then any morphism from X to an algebraic space factors
through φ [Alp09, Theorem 6.6]. (If Y is an algebraic space, then this is [Alp09, Theorem 6.6].
More generally, since algebraic spaces are sheaves in the smooth topology, this property may
be checked smooth locally on Y , and since good moduli space morphisms are stable under
base change [Alp09, Proposition 4.7(i)], this follows from the case of Y an algebraic space.) In
particular, if there exists a good moduli space morphism φ : X → X, where X is an algebraic
space, then X is determined up to unique isomorphism. In this case, X is said to be the good
moduli space of X . If X = [U/G], this corresponds to X being a good quotient of U by G in
the sense of [GIT94] (for example, for a linearly reductive G, [SpecR/G] → SpecRG is a good
moduli space).

In many respects, good moduli space morphisms behave like proper morphisms. They are
universally closed [Alp09, Theorem 4.16(ii)] and weakly separated [ASvdW10, Proposition 2.17],
but since points of X can have non-proper stabilizer groups, good moduli space morphisms are
generally not separated (for example, if G is a non-proper group scheme, BG is not separated).
Pushforward along a good moduli space morphism respects coherence [Alp09, Theorem 4.16(x)].
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Formal GAGA for good moduli spaces

The main theorem in this paper continues this philosophy, showing that formal GAGA holds
for good moduli space morphisms, at least when the stack has “enough vector bundles.” Recall
that a stack is said to have the resolution property if every coherent sheaf has a surjection from
a vector bundle. Recall also that if X → X is a good moduli space morphism and X has
a unique closed point, then X also has a unique closed point [Alp09, Theorem 4.16(iii) and
Proposition 9.1].

Theorem 1.1. Suppose that X → SpecA is a good moduli space, where A is a complete
Noetherian local ring with maximal ideal m and X is of finite type over SpecA. Let X̂ denote
the formal completion of X with respect to m (see Section 2).

i. The completion functor Coh(X )→ Coh(X̂ ) is fully faithful.

ii. Suppose that X0 = X ×SpecA SpecA/m has the resolution property (for example, X0 is a
quotient stack; see Remark 3.9). Then the following conditions are equivalent:

(quot) The stack X is the quotient of an affine scheme by GLn for some n.
(quot′) The stack X is the quotient of an algebraic space by an affine algebraic group.

These conditions imply the following equivalent conditions:

(res) The stack X has the resolution property.
(res′) Every coherent sheaf on X0 has a surjection from a vector bundle on X .

These conditions imply the following:

(GAGA) The completion functor Coh(X )→ Coh(X̂ ) is an equivalence.

If the unique closed point of X has affine stabilizer group, then (res) implies (quot′), and if
X has affine diagonal, then (GAGA) implies (res′).

We provide examples in Section 5 to show that (GAGA) may fail under weaker hypotheses.

Remark 1.2. As this paper went to press, we learned of a forthcoming result by Jarod Alper, Jack
Hall, and David Rydh that implies that many stacks satisfy (quot) after an étale base change
on their good moduli spaces. Combined with our Theorems 1.1 and 4.4, it implies that if X has
affine diagonal, all the conditions in Theorem 1.1 hold (see Remark 5.7 and Conjecture 5.8).

Remark 1.3. In [Ols05, Theorem 1.4] (see also [Con]), Martin Olsson proves that formal GAGA
holds for proper Artin stacks. His main theorem gives a proper surjection from a proper scheme
X →X , and formal GAGA follows from a dévissage (as outlined in [HR14, § 1.2]). In our setting
such a surjection does not exist, and our arguments are quite different.

Remark 1.4. If X has quasi-finite diagonal over a base S, the Hilbert stack HSX /S of quasi-finite
representable S-maps with domain a proper S-stack is an algebraic stack [HR14, Theorem 2]. A
key ingredient in the proof of this result is a weaker variant of formal GAGA for non-separated
stacks.

Remark 1.5. Formal GAGA allows the study of a stack X with good moduli space X to be
largely reduced to the study of the fibers of the map X → X. This reduction is particularly
appealing since it is possible that the geometric fibers of this map must be quotient stacks (see
Question 6.4 and Remark 6.7). Here is the template for the reduction:

(0) Start with a problem which is étale local on X, and a solution to the problem for the fiber
over a point x.
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(i) Use deformation theory to extend the solution to a formal solution. Deformation theory
typically shows that the problem of extending a solution from an infinitesimal neighborhood
to a larger infinitesimal neighborhood is controlled by the cohomologies of certain quasi-
coherent sheaves. If X → SpecA has cohomological dimension zero – that is, all higher
cohomology groups vanish (which holds for instance if it is cohomologically affine with affine
diagonal; see Remark 3.7) – then deformation-theoretic problems are more or less trivial
when working with good moduli space morphisms. (See Lemma 3.6 as an example of this.)

(ii) Show that any formal solution is effectivizable. That is, show that any compatible family
of solutions over all infinitesimal neighborhoods of x ∈ X is induced by a solution over
Spec ÔX,x. If the question can be formulated entirely in terms of coherent sheaves, as is
often the case, then (GAGA) does this step.

(iii) Use Artin approximation ([Art69, Theorem 1.12]) to extend the solution to an étale neigh-
borhood of x. If the stack of solutions is locally finitely presented, Artin’s theorem says that
for a map f from the complete local ring at a point, there is a map from the henselization
of the local ring which agrees with f modulo any given power of the maximal ideal. (By
[LO09, Proposition 2.3.8], one can instead apply Artin’s theorem to the associated functor
of isomorphism classes.) By step (i) (uniqueness of deformations) and formal GAGA, this
must actually be an extension of f . By local finite presentation, this map extends to some
étale neighborhood, as the henselization is the limit of all étale neighborhoods.

Proposition 6.1 illustrates this template. It shows that if X → X is a good moduli space, x ∈ X
is a point at which formal GAGA holds, and the fiber over x is a quotient stack, then there is
some étale neighborhood of x over which X is a quotient stack.

Remark 1.6 (Related work). Previous work [AB05, Theorem 1.7], [AB04, Theorem 7.6], and
[Bri13, Theorem 2.20] proves that the Hilbert-scheme of G-equivariant multiplicity-finite sub-
schemes of an affine scheme exists when G is connected reductive and of characteristic zero. It
follows that formal GAGA holds in the following situation. Working over the spectrum X of a
complete local ring, let V → X be an affine morphism with an action of a linearly reductive
group G. Then formal GAGA holds for flat closed substacks Z of X = [V/G] such that the good
moduli space Z of Z is finite over X. The characteristic p case (with linearly reductive instead of
reductive) follows similarly from the existence of the multigraded Hilbert scheme [HS04], since
there are few linearly reductive group schemes in characteristic p; any such scheme is the ex-
tension of a linear reductive finite flat group scheme G by a torus, and [AOV08] classified all
such G.

The present work is a natural and direct proof of formal GAGA, extending this previous work
to non-flat substacks and to arbitrary coherent sheaves. While we work with the more restrictive
hypothesis that Z = X, David Rydh has pointed out that it is easy to modify our argument to
allow for stacks with separated good moduli space of finite type over X and closed substacks
Z whose good moduli space Z is proper over X (and similarly for coherent sheaves). Finally,
while our work allows for more general stacks, in the main interesting case where X has affine
stabilizers, our main theorem gives (GAGA)⇔ (res)⇔ X = [V/G] with V affine and G = GLn.

2. Terminology

This paper follows the conventions of [Alp09]. In particular, all schemes are assumed to be
quasi-separated, stacks have quasi-compact diagonal, all morphisms of stacks are assumed to be
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quasi-compact and quasi-separated. We fix a base scheme X, which will often be isomorphic to
SpecA where A is a complete Noetherian local ring with maximal ideal m. An affine algebraic
group is understood to be a flat (over X) subgroup scheme of GLn := GLn,X , and a quotient
stack [U/G] is the quotient of an algebraic space U → X by an affine algebraic group over S; in
particular, BG always denotes the quotient [X/G] as a stack over X.

Throughout the paper X is an algebraic stack over X; unless otherwise indicated, the map
X → X = SpecA is a good moduli space morphism and is of finite type. We denote by Xlis-et

the lisse-étale topos of X and define ÔX to be the completion lim←−OX /In, where I is the sheaf

of ideals generated by the pullback of m ⊆ A. Following [Con, § 1], we define the ringed topos X̂
to be the pair (Xlis-et, ÔX ). There is a natural completion functor

Coh(X )→ Coh(X̂ ) , F 7→ F̂ := lim←−F/I
n+1F .

Letting Xn = X ×SpecA SpecA/mn+1, the natural functor Coh(X̂ ) → lim←−Coh(Xn) is an
equivalence of categories [Con, Theorem 2.3], where the map Coh(Xn) → Coh(Xn−1) is given
by pullback along the closed immersion Xn−1 → Xn. We may therefore regard elements of
Coh(X̂ ) as compatible systems of coherent sheaves on the Xn.

3. Proof of Theorem 1.1

This section is quite technically involved. Subsequent sections depend on the results but not on
the techniques or terminology developed in this section.

We use the terminology of topoi developed in [SGA4]. A morphism of topoi f : Y → X is a
triple (f∗, f

−1, α), where f−1 : X → Y is a functor which commutes with finite limits, f∗ : Y → X
is a functor, and α is an adjunction HomY (f−1(−),−)

∼−→ HomX(−, f∗(−)). If OY and OX
are sheaves of rings on Y and X, respectively, then a morphism of ringed topoi (also denoted
f : Y → X) is a morphism of topoi, together with a morphism of sheaves of rings f−1OX → OY .
In this case, f∗ : OY -mod→ OX -mod has left adjoint f∗(−) = f−1(−)⊗f−1OX

OY .

Definition 3.1. A morphism of ringed topoi f : Y → X is flat if f∗ is exact.

Lemma 3.2. If f : Y → X is a flat morphism of ringed topoi, F is a locally finitely presented OX -
module, and G is any OX -module, then the natural map f∗HomOX

(F ,G)→HomOY
(f∗F , f∗G)

is an isomorphism.

Proof. Case 1: If F ∼= OX , the natural map is isomorphic to the identity map on f∗G. Similarly,
if F ∼= O⊕IX , the map is isomorphic to the canonical isomorphism f∗(G⊕I)→ (f∗G)⊕I .

Case 2: Suppose that F has a global presentation

O⊕JX → O⊕IX → F → 0 .

Since f∗ is right exact, we get a global presentation

O⊕JY → O⊕IY → f∗F → 0 .

Applying HomOX
(−,G) to the first sequence and HomOY

(−, f∗G) to the second, we get the exact
sequences

0 //HomOX
(F ,G) //HomOX

(O⊕IX ,G) //HomOX
(O⊕JX ,G) ,

0 //HomOY
(f∗F , f∗G) //HomOY

(O⊕IY , f∗G) //HomOY
(O⊕JY , f∗G) .
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Since f is flat, the first sequence remains exact if we apply f∗, so the rows in the following
diagram are exact. The squares commute by naturality of the vertical arrows.

0 // f∗HomOX
(F ,G) //

��

f∗HomOX
(O⊕IX ,G) //

o
��

f∗HomOX
(O⊕JX ,G)

o
��

0 //HomOY
(f∗F , f∗G) //HomOY

(O⊕IY , f∗G) //HomOY
(O⊕JY , f∗G) .

We have already shown that the middle and right vertical arrows are isomorphisms, so the left
vertical arrow must also be an isomorphism, completing the proof in the case where F is globally
presented.

Case 3: Now we prove the general case. To check that the natural map f∗HomOX
(F ,G) →

HomOY
(f∗F , f∗G) is an isomorphism, it is enough to find a cover of the final object of Y such

that it pulls back to an isomorphism. Since F is quasi-coherent, there is a cover of the final
object of X so that the pullback of F has a presentation. Pulling that cover back along f , we
get a cover of the final object of Y (here we are using the exactness of f−1 to say that the final
object pulls back to the final object and that covers pull back to covers on canonical sites). On
that cover, the map is an isomorphism by case 2. The construction of Hom , the application of
f∗, and the construction of the natural map are local on X, so the natural morphism constructed
on the cover is the restriction of the natural morphism on Y .

Lemma 3.3. If X is a Noetherian algebraic stack and I ⊆ OX is a quasi-coherent sheaf of ideals,
then ÔX , the completion of OX with respect to I, is flat over OX . That is, the canonical map
ι : X̂ →X is a flat morphism of ringed topoi.

Proof. Let F → F ′ be an injection of OX -modules. We need to check the injectivity of the map

F ⊗OX
ÔX → F ′ ⊗OX

ÔX .

Since sheafification is exact, it suffices to check the injectivity of the maps

F(U)⊗OX (U)ÔX (U)→ F ′(U)⊗OX (U)ÔX (U)

as U varies over a base for Xlis-et. Thus it suffices to check that the maps above are injections
for f : U → X a smooth map and U an affine scheme. By definition, OX (U) = OU (U) and

ÔX (U) = ÔU (U). Since U is affine, ÔU (U) = ÔU (U). Injectivity follows since ÔU (U) is flat over
OU (U) [Eis95, Theorem 7.2b].

Remark 3.4. The same trick of restricting to affine schemes smooth over X shows that for any
coherent sheaf F on X , the natural map ι∗F → F̂ is an isomorphism. (Note, however, that this
is not true for quasi-coherent sheaves.)

Remark 3.5. Lemma 3.3 and Remark 3.4 show that completion of coherent sheaves is exact.

Lemma 3.6. Suppose that φ : X → SpecA is a good moduli space, where A is a complete
Noetherian local ring with maximal ideal m. Additionally assume that φ has cohomological
dimension zero. Then any vector bundle V on Xn−1 is the reduction of a unique vector bundle
on Xn. In particular, any vector bundle on X0 extends to a unique vector bundle on X̂ .

Remark 3.7 (Cohomological dimension of cohomologically affine morphisms). If X has affine
diagonal, then φ has cohomological dimension zero; that is, Riφ∗ = 0 for i > 0. Indeed, by [Alp09,
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Remark 3.5]), cohomologically affine stacks with non-affine diagonal are not cohomologically of
dimension zero. The reason is that the morphism of triangulated categories

D+(QCoh(X))→ D+
QCoh(OX -mod)

is not an isomorphism unless X has affine diagonal, and the derived functors are computed in
the second category. (See for example [SP, Tag 07B5].)

An easy example is that for an elliptic curve E over a field k, f : Spec k → BE is not cohomo-
logically of dimension zero; this follows from pulling back by the smooth cover f : Spec k → BE
and cohomology and base change. A more essential counterexample is the structure morphism
g : BE → Spec k, the hypercover spectral sequence associated with f : Spec k → BE gives
H1(BE,OBE) 6= 0.

Proof of Lemma 3.6. This is a direct application of [FGI+05, Theorem 8.5.3(b)]. The obstruction
to extending V to Xn lies in H2(Xn−1, In ⊗ End(V)), which vanishes since Xn−1 is cohomolog-
ically of dimension zero. Therefore V extends. Moreover, the isomorphism classes of extensions
are parameterized by H1(Xn−1, In ⊗ End(V)), which vanishes by the same argument, so the
extension is unique.

Lemma 3.8. Suppose that φ : X → SpecA is a good moduli space, where A is a complete
Noetherian local ring with maximal ideal m. Then a quasi-coherent sheaf F on a locally Noethe-
rian stack X is a flat OX -module (that is, restricts to a flat sheaf on any smooth cover by a
scheme) if and only if F ⊗OX

− is an exact functor on QCoh(X ).

Proof. Suppose that F is flat and let G → G′ be an injection of quasi-coherent sheaves. Let
f : U →X be a smooth cover by a scheme. We may check that F ⊗G → F ⊗G′ is injective after
pulling back to U . Pullback respects tensor products, f∗G → f∗G′ is injective (since f is flat),
and f∗F is a flat OU -module, so f∗(F ⊗ G)→ f∗(F ⊗ G′) is injective.

For the converse, again let f : U → X be a smooth cover by a scheme. We wish to prove
that f∗F is flat. This may be done locally on U , so we may assume that U is a Noetherian
affine scheme. The result is well known for schemes, so it suffices to prove that f∗F ⊗OU

− is an
exact functor on QCoh(U). First we claim that for any OU -module G, the counit of adjunction
f∗f∗G → G has a natural section. Indeed, let W → U be a smooth morphism. Then the map

f∗f∗G(W → U) ∼= G(U ×X W → U)→ G(W → U)

has a section given by the restriction map

G(W → U)→ G(U ×X W →W → U) .

Now let G → G′ be an injection of quasi-coherent sheaves on U . Since U is Noetherian, f is
quasi-compact and quasi-separated, so f∗G → f∗G′ is an injection of quasi-coherent OX -modules.
By assumption, F⊗OX

f∗G → F⊗OX
f∗G′ is an injection, and since f is flat, φ : f∗(F⊗OX

f∗G)→
f∗(F ⊗OX

f∗G′) is an injection. Noting that f∗(F ⊗OX
f∗(−)) ∼= f∗F ⊗OU

f∗f∗(−), we get a
diagram

f∗F ⊗OU
f∗f∗G

φ
//

π

��

f∗F ⊗OU
f∗f∗G′

��

f∗F ⊗OU
G ψ

//

σ

JJ

f∗F ⊗OU
G′ .

σ′

JJ

We have that φ is injective, and σ is injective (since it is a section of π). Since σ′ ◦ψ = φ ◦ σ, we
conclude that ψ is injective.
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Proof of Theorem 1.1. Part (i): For any coherent OX -modules F and G, we must show that

the natural map HomOX
(F ,G) → HomÔX

(F̂ , Ĝ) is an isomorphism. We have that Hom(F ,G)

is coherent. By Lemma 3.2, Lemma 3.3, and Remark 3.4, the natural map ̂HomOX
(F ,G) →

HomÔX
(F̂ , Ĝ) is an isomorphism. By [Alp09, Proposition 4.7 (iii)], the induced map on global

sections is the desired isomorphism.

Part (ii): (res)⇒(res′). This is immediate since any coherent sheaf on X0 is a coherent sheaf

on X .

(res′)⇒(GAGA). By part (i), the completion functor is fully faithful. It remains to show that any
compatible system F = {Fn}n>0 of coherent sheaves on the stacks Xn is induced by a coherent
sheaf F on X . As usual, we denote by I the quasi-coherent sheaf of ideals generated by φ∗(m).

By (res′), there exist a locally free sheaf V on X and a surjection V → F0. We inductively
argue that for each n this lifts to a surjection V → Fn. The bottom row of the following diagram
is exact:

V

����zz

0 // InFn // Fn // Fn/InFn // 0 .

(1)

Since V is a vector bundle, the following sequence is exact:

0→HomOX
(V, InFn)→HomOX

(V,Fn)→HomOX
(V,Fn/InFn)→ 0 .

By cohomological affineness of φ, the sequence remains exact when we take global sections, so
the composition map HomOX

(V,Fn) → HomOX
(V,Fn/InFn) is surjective. Thus, there is a

lift V → Fn as indicated by the dotted arrow in (1). The induced map V → Fn is surjective
by Nakayama’s lemma. This gives a compatible system of maps {V → Fm}m>0, and thus a
surjective morphism V̂ → F.

Repeating the argument above for the kernel of V̂ → F, we get a presentation Ŵ → V̂ → F→
0, where V and W are vector bundles on X . By part (i), the morphism Ŵ → V̂ is induced by
some OX -module homomorphism W → V. Let G be the cokernel of this map. By Remark 3.5,
the top row of the following diagram is exact:

Ŵ // V̂ // Ĝ

��

// 0

Ŵ // V̂ // F // 0 .

The induced morphism from Ĝ to F is therefore an isomorphism.

(res′)⇒(res). The argument above shows that if (res′) holds and F is a coherent sheaf on X ,
then there are a vector bundle V on X and a surjection V̂ → F̂ . Since (res′)⇒(GAGA), this
map is induced by a surjection V → F .

(GAGA)⇒(res′). First we show that if X has affine diagonal and if (GAGA) holds, any F ∈
Coh(X ) whose completion is a vector bundle on X̂ is a vector bundle. By Remark 3.4, the
equivalence of categories of coherent sheaves respects tensor products, so since F̂⊗ÔX

− is an exact

functor on Coh(X̂ ), we have that F ⊗OX
− is an exact functor on Coh(X ). Let SpecR → X

be a smooth cover of X (note that X is assumed of finite type over the Noetherian ring A,
so it is quasi-compact). Then SpecR×X SpecR is of finite type over SpecA, so the projections
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SpecR ×X SpecR → SpecR are smooth, quasi-compact, and quasi-separated, so any quasi-
coherent sheaf on X is the limit of its coherent subsheaves [SP, Lemma 07TU]. Since F ⊗OX

−
commutes with direct limits, it is exact on the category of quasi -coherent sheaves, so F is a flat
OX -module by Lemma 3.8. It follows that F is a vector bundle; indeed, this can be checked
smooth locally, and a flat coherent sheaf on a Noetherian affine scheme is locally free [Mil80,
Theorem 2.9 of Chapter 1].

Now for any coherent sheaf F0 on X0, since X0 is assumed to have the resolution property,
there is a vector bundle V0 on X0 with a surjection to F0. By Lemma 3.6, V0 extends to a vector
bundle on X̂ , which by formal GAGA is the completion of a coherent sheaf V on X . By the
paragraph above, V is a vector bundle. Now V → V0 → F0 is a surjection. This shows that (res′)
holds.

(quot)⇔(quot′). It is clear that (quot)⇒(quot′). Conversely, suppose X = [V/G] for some al-
gebraic space V and some subgroup G ⊆ GLn. Let U = (V × GLn)/G, where g · (v, h) =
(v · g−1, g · h) (alternatively, U is the pullback of the universal GLn-torsor along the composition
[V/G]→ BG→ BGLn). Then X = [U/GLn].

Since U →X is a GLn-torsor, it is an affine morphism, and X → SpecA is cohomologically
affine, so U → SpecA is cohomologically affine. As U has trivial stabilizers, it is an algebraic
space, so by Serre’s criterion [Knu71, Theorem III.2.5], U is an affine scheme.

(quot)⇒(res)⇒(quot′). By [Gro13, Corollary 5.9] (quot)⇒(res), and if the closed point of X has
affine stabilizer, then by [Tot04, Lemma 4.1] (res)⇒(quot′).

Remark 3.9. The proofs of (quot)⇔(quot′) and (quot)⇒(res)⇒(quot′) apply to any stack with
affine good moduli space. Note however that (res)⇒(quot′) requires all closed points of the stack
to have affine stabilizer.

Remark 3.10. Note that the proof of (GAGA)⇒(res′) shows that (GAGA) implies that any
coherent sheaf whose completion is a vector bundle must be a vector bundle. The hypothesis
that X0 have the resolution property is not necessary for this result.

Remark 3.11. Suppose A/m = k and that A is a k-algebra (this is automatic if k has characteristic
zero1). If X ∼= X0×Spec k SpecA, then we have a morphism s : X →X0 such that X0 ↪→X

s−→
X0 is the identity map. Any vector bundle V0 ∈ Coh(X0) is the reduction of the vector bundle
s∗V0 ∈ Coh(X ). If X0 has the resolution property, then any F0 ∈ Coh(X0) has a surjection
from a vector bundle V0 ∈ Coh(X0), so the map s∗V0 → V0 → F0 is a surjection from a vector
bundle on X . That is, if X0 has the resolution property, (res′) holds.

Note, however, that the condition X ∼= X0 ×Spec k SpecA is frequently not satisfied. For
example, consider the j-invariant map j : M1,1 → A1

C and let X → SpecCJtK be the pullback of j
to the local ring of A1

C at the origin. Since elliptic curves with j-invariant zero have automorphism
group Z/4Z but generic elliptic curves have automorphism group Z/2Z, X cannot be the pullback
of its special fiber.

4. Formal GAGA is finite flat local (and étale local) on the base

Lemma 4.1. Suppose that φ : X → SpecA is a good moduli space, where A is a complete
Noetherian local ring and φ is of finite type. Suppose that SpecA′ → SpecA is a finite flat

1Every non-negative integer is non-zero in k, so lies in Arm, so is invertible in A. This shows that A is a Q-algebra.
By [Eis95, Theorem 7.7], it is a k-algebra.
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morphism, where A′ 6= 0 is again local (and therefore a complete Noetherian local ring), and let
X ′ = X ×SpecA SpecA′.

If Coh(X ′)→ Coh(X̂ ′) is essentially surjective, then so is Coh(X )→ Coh(X̂ ).

Remark 4.2. We note that any morphism of spectra of complete Noetherian local rings SpecA′ →
SpecA which is an étale cover must be finite flat. Since such a morphism is surjective, A′/mAA

′

is some étale (and so finite) extension of A/mA. In particular, mAA
′ = mA′ . By [EGA IV,

Proposition 18.3.2], there is a finite étale morphism SpecB → SpecA inducing the same extension
of A/mA. By the formal criterion for étaleness and the fact that A′ and B are each complete
with respect to mA, there are unique morphisms SpecA′ → SpecB and SpecB → SpecA′

over SpecA lifting the isomorphism of extensions of A/mA, and these must be inverses. Thus,
SpecA′ → SpecA is finite flat.

Remark 4.3. By Remark 3.4, completion of coherent sheaves agrees with pullback along the
morphism of topoi ι : X̂ → X . It follows that pullback along π : X ′ → X commutes with
completion of coherent sheaves, and that completion of coherent sheaves is a right-exact functor.
To see this, note that the hypotheses of A′ 6= 0 and finiteness imply that mn

A′ ⊆ mAA
′ ⊆ mA′ for

some n. Indeed, the second containment can only fail if mA contains a unit of A′, in which case
mAA

′ = A′, so Nakayama’s lemma implies A′ = 0. For the first containment, we can reduce to
the case mA = 0, so A is a field. Then A′ is a finite-dimensional vector space, so mn

A′ stabilizes

for large n, and it must stabilize to 0 (again by Nakayama). We can therefore regard both X̂
and X̂ ′ as completions with respect to the pullback of mA.

Proof of Lemma 4.1. Good moduli space morphisms are stable under base change [Alp09, Propo-
sition 4.7(i)] and composition, so X ′′ = X ′ ×X X ′ → SpecA′′ = Spec (A′ ⊗A A′) is a good
moduli space. Let p1, p2 : X ′′ →X ′ denote the projections. While A′′ may no longer be a local
ring, SpecA′′ is finite flat over SpecA′, so it must be a disjoint union

⊔
SpecA′′i , where each A′′i

is a complete local ring. Let X ′′
i = X ′′ ×SpecA′′ SpecA′′i .

Let F ∈ Coh(X̂ ), and let F′ ∈ Coh(X̂ ′) be the pullback to X̂ ′. By assumption, F′ is the
completion of a sheaf F ′ ∈ Coh(X ′). Applying Theorem 1.1(i) to each of the good moduli space
morphisms X ′′

i → SpecA′′i , we see that the descent datum p∗2F
′ ∼−→ p∗1F

′ is induced by a map
p∗2F ′

∼−→ p∗2F ′ (note that we are using Remark 4.3). By faithfully flat of finite presentation (fppf)

descent for coherent sheaves, F ′ is the pullback of a coherent sheaf F on X . Since F̂ and F are
defined by the same descent datum, they are isomorphic.

Theorem 4.4 (Formal GAGA is finite flat and étale local on the base). In the setup of Lemma
4.1, formal GAGA holds for X → SpecA if and only if it holds for X ′ → SpecA′.

Proof. By Theorem 1.1(i), both completion functors are fully faithful.

By Lemma 4.1, if the completion functor Coh(X ′)→ Coh(X̂ ′) is essentially surjective, then
so is Coh(X )→ Coh(X̂ ).

Conversely, suppose that Coh(X )→ Coh(X̂ ) is essentially surjective, and let F ∈ Coh(X̂ ′).
Since π : X ′ → X is finite, π∗F ∈ Coh(X̂ ). By assumption, π∗F ∼= F̂ for some F ∈ Coh(X ).
The composition π∗F̂ ∼−→ π∗π∗F → F is a surjection. Let G denote the kernel of this map. By
the same argument, there exists a surjection π∗Ĝ → G for some G ∈ Coh(X ). Then F is the
cokernel of the map π∗Ĝ → π∗F̂ . By full faithfulness and Remark 4.3, this map is induced by a
morphism π∗G → π∗F , and the cokernel of this map has completion F.

Remark 4.5. In the same spirit, we note that the resolution property also descends along finite
flat morphisms [Gro13, Proposition 4.3 (vii)].
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5. Counterexamples to formal GAGA

Recall that for a relative group scheme G→ S, a coherent sheaf on BG = [S/G] is equivalent to a
coherent sheaf on S with a G-linearization (that is, a G-action). Pushforward along φ : BG→ S
corresponds to taking the subsheaf of invariants; in particular, since OBG corresponds to OS
with the trivial G-action, φ is Stein. Since the action of G on S is trivial, φ is universal for
maps to algebraic spaces.2 The condition that the map be cohomologically affine is precisely the
condition that G be linearly reductive. Therefore BG → S is a good moduli space if and only
if G is linearly reductive. (We note that this holds even if G is not affine; while in the usual
definition of reductive of [SGA3] G → S is affine, we use the notion of linearly reductive of
[Alp09, Definition 12.1], which is a cohomological condition.)

Formal GAGA fails without the good moduli space condition. In the following, we say that
a morphism to an algebraic space X → X is a no-good moduli space if it is universal for maps
to algebraic spaces but is not a good moduli space.

Example 5.1 (Counterexample to full faithfulness for a no-good moduli space). Let A = kJtK for
a field k of characteristic not two. Let G = Spec kJtKt Spec k((t)), regarded as an open subgroup
of (Z/2Z)SpecA. Then X = BG → SpecA is not a good moduli space. The non-trivial one-
dimensional representation of Z/2Z induces a non-trivial rank one vector bundle on X whose
completion is the trivial rank one vector bundle on X̂ (indeed, X̂ ∼= SpecA), showing that the
completion functor is not fully faithful.

Example 5.2 (Counterexample to essential surjectivity for a no-good moduli space). Formal
GAGA fails for BGa. For a ring R, a line bundle on BGa,R is equivalent to a one-dimensional rep-
resentation of Ga,R (that is, a group homomorphism Ga,R → Gm,R). The formula x 7→ exp(tx) =∑∞

i=0
ti

i!x
i gives a compatible family of homomorphisms Ga,C[t]/tn → Gm,C[t]/tn which do not lift

to a homomorphism Ga,CJtK → Gm,CJtK.

Formal GAGA may also fail for good moduli spaces.

Example 5.3 (Counterexample to essential surjectivity with non-separated diagonal). Let A =
kJtK for a field k. Let G be Spec kJtK with a doubled origin, regarded as a group over SpecA.
Since G is a quotient of (Z/2Z)SpecA by a flat subgroup scheme, it is linearly reductive by [Alp09,
Proposition 12.17], so X = BG→ SpecA is a good moduli space.

Any vector bundle on X consists of a vector bundle V on SpecA and a group homomorphism
GA → AutA(V). Since AutA(V) is separated, such a map must factor through the trivial group.
So any vector bundle on X corresponds to a vector bundle on SpecA with trivial G-action.
However, X̂ ∼= BSpecA(Z/2Z), so there are formal vector bundles not of this form, namely those
induced by non-trivial representations of Z/2Z.

Even if we require separated diagonal, formal GAGA may still fail.

Example 5.4 (Counterexample to essential surjectivity with separated, non-affine diagonal). Let

G′ = Proj
(
kJtK[x, y, z]/(zy2 − x2(x+ z)− tz3)

)
,

where t has degree zero and x, y, and z have degree one. Let G be the complement of the origin
of the special fiber, with structure map π : G → Spec kJtK. The generic fiber is an elliptic curve

2More generally, if α : G×X → X is an action of G on an algebraic space X and the two maps α, p2 : G×X → X
have coequalizer Y in the category of algebraic spaces, then [X/G]→ Y is universal for maps to algebraic spaces.
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E → Spec k((t)), but the special fiber is isomorphic to Gm. By [Sil94, IV Theorem 5.3(c)], G is
a relative group scheme over Spec kJtK. We claim that BG → Spec kJtK is a good moduli space
morphism (that is, that taking G-invariants is exact on G-linearized coherent sheaves).

To see this, we first note that any deformation of the group scheme Gm is trivial. By [SGA3,
Exposé III, Corollaire 3.9], isomorphism classes of deformations of the group scheme along a
square-zero ideal I (if they exist) are parameterized by H2(Gm,Lie(Gm) ⊗ I), where Lie(Gm)
is the adjoint representation and I has the trivial action. The group cohomology Hi(Gm,−) as
defined in [SGA3, Exposé III, 1.1] is simply the Čech cohomology associated with the cover
Spec kJtK → BGm. Since Gm is affine, this Čech cohomology agrees with sheaf cohomology on
BGm. Since Gm is linearly reductive, BGm → Spec kJtK is cohomologically affine, so the higher
cohomology groups vanish. Thus, the only deformation of Gm is Gm.

Next, any torsion G-linearized coherent sheaf is supported over Spec (k[t]/tn) for some n.
That is, there is some choice of n such that the given sheaf is in the essential image of j∗ in the
following diagram:

(BGm)Spec (k[t]/tn) ∼=
πn

��

BG×Spec kJtK Spec (k[t]/tn) �
� j

// BG

π

��

Spec (k[t]/tn) �
� i // Spec kJtK .

Since i and j are affine, and πn is cohomologically affine, we have

Rπ∗ ◦ j∗ = R(π∗ ◦ j∗) = R(i∗ ◦ πn∗) = i∗ ◦ πn∗ = π∗ ◦ j∗ .

That is, torsion sheaves on BG have trivial higher cohomology.

Any torsion-free G-linearized coherent sheaf is free with trivial action. Indeed, it is free with
some rank r since kJtK is a discrete valuation ring The action of G is given by some group
homomorphism G→ GLr,kJtK. Since G has proper connected generic fiber and GLr is affine, this
map must be trivial over the generic point. Since G is reduced and GLr is separated, the map
must be trivial.

Any G-linearized coherent sheaf F (with torsion subsheaf F tor) fits into a G-equivariant short
exact sequence

0→ F tor → F → F/F tor → 0 . (2)

Since F/F tor is free, the following sequence is exact.

0→Hom(F/F tor,F tor)→Hom(F/F tor,F)→Hom(F/F tor,F/F tor)→ 0 .

Since Hom(F/F tor,F tor) is torsion, H1(BG,Hom(F/F tor,F tor)) = 0, so the sequence remains
exact when we take global sections. Global sections of Hom(F ,G) are G-equivariant maps from
F to G, so there is a G-equivariant splitting of the sequence (2). We have shown that any G-
linearized coherent kJtK-module M decomposes into a direct sum of its torsion part M tor (with
trivial cohomology) and a free part M free (with trivial action).

Suppose that we have a short exact sequence of linearized modules 0→M ′′ →M
φ−→M ′ → 0.

We wish to show that any invariant m′ ∈M ′ is the image of an invariant element of M . Since φ
is surjective, we have m′ = φ(mf + mt), where mt is torsion and mf is invariant. Since torsion
sheaves have trivial cohomology, any invariant torsion element which is the image of a torsion
element is actually the image of an invariant torsion element, so φ(mt) = φ(nt) for some invariant
torsion element nt ∈ M . Then mf + nt is invariant and φ(mf + nt) = m′. This completes the
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proof that BG→ Spec kJtK is a good moduli space morphism.

Now take any vector bundle over the origin with non-trivial Gm action. By Lemma 3.6, this
extends to a unique vector bundle on B̂G, but we have seen that there is no torsion-free coherent
sheaf on BG with non-trivial action on the special fiber.

Remark 5.5. A similar example gives a counterexample to [Alp10, Conjecture 1]. Let

G′ = Proj
(
C[t, x, y, z]/(zy2 − x2(x+ z)− tz3)

)
,

where t has degree zero and x, y, and z have degree one. Let G be the largest subscheme of
G′ over which the map to A1 = SpecC[t] is smooth. By [Sil94, IV Theorem 5.3(c)], G is a
relative group over A1. Let X = BG. This X is finitely presented over SpecC, and the image
under the quotient map A1 → X of the origin of A1 is a closed point x with stabilizer Gm. If
[Alp10, Conjecture 1] were true, there would be an algebraic space Y with a point y and an étale
representable morphism f : [Y/Gm]→X sending y to x, inducing an isomorphism of stabilizers.
As f is étale, its image is open, so the image contains some closed point of X whose stabilizer is
an elliptic curve. By [GS15, Proposition 3.2], f induces finite-index inclusions of stabilizers. But
no subgroup of Gm can possibly be a finite-index subgroup of an elliptic curve.

It is possible that [Alp10, Conjecture 1] holds for stacks with affine stabilizers.

Remark 5.6. Taking X = BG and X ′ = BGm over A = kJtK, Example 5.4 shows that the
natural map

HomA(X ,X ′)→ HomA(X̂ , X̂ ′)

is not necessarily an equivalence of categories. The complex analytic analogue of this natural
map is an equivalence of categories if X is a proper Deligne–Mumford stack and X ′ is either a
quasi-compact algebraic stack with affine diagonal [Lur04, Theorem 1.1] or a locally of finite type
Deligne–Mumford stack with quasi-compact and quasi-separated diagonal [Hal14, Theorem 1].

Remark 5.7. It is difficult to imagine an example of a stack X with affine diagonal and good
moduli space SpecA which is not a quotient stack (that is, does not satisfy (quot′)) étale locally
on SpecA. Likely candidates, such as non-trivial Gm-gerbes, do not work (see Remark 6.5). If
no such stack exists, then Theorems 1.1 and 4.4 show that formal GAGA holds provided that
X has affine diagonal.

Conjecture 5.8. Suppose that φ : X → SpecA is a good moduli space morphism, where A
is a complete Noetherian local ring and φ is of finite type. If X has affine diagonal, then the
completion functor Coh(X ) → Coh(X̂ ) is an equivalence of categories. (Note: a forthcoming
result implies that this conjecture holds; see Remark 1.2.)

Formal GAGA may hold even if X does not have affine diagonal, but it is usually uninter-
esting. For example, for any elliptic curve E → SpecA, formal GAGA holds for BE → SpecA
since all coherent sheaves on BE are pulled back from SpecA.

6. Application to the local quotient structure of good moduli spaces

Recall that a stack X is a quotient stack if it is the stack quotient of an algebraic space by a
subgroup of GLn for some n (that is, if (quot′) holds).

Proposition 6.1. Let φ : X → X be a stack over X with affine diagonal, with φ of finite type
and X a locally Noetherian scheme. Assume that φ is a good moduli space. Let x ∈ X be a
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point such that the fiber X0 over x is a quotient stack. Suppose that formal GAGA holds for
X̃ = X ×X Spec ÔX,x → Spec ÔX,x. Then there exists an étale neighborhood X ′ → X of x such
that X ×X X ′ is a quotient stack.

Remark 6.2. To apply the proposition to the case where X is an algebraic space and x is a
topological point, one would find an étale neighborhood U → X with U a scheme and a point
u ∈ U which maps to x, then apply the proposition to X ×X U → U . Any two étale covers have
a common refinement, so by Theorem 4.4, the formal GAGA hypothesis is satisfied for one étale
cover if and only if it is satisfied for any étale cover. (Also see Remark 6.3.)

Proof of Proposition 6.1. The question is étale local on X, and by Theorem 4.4 the hypothesis
is étale local on X, so we may assume that X = SpecR is an affine scheme. Let Xh = SpecRh,

where Rh is the strict henselization of R at x, and let X loc = Spec R̂h. Let X loc and X h denote
the pullback of X to X loc and Xh, respectively. For a sheaf F on X (or X h), let Fh and F loc

denote the pullback of F to X h and X loc , respectively. Let X̂ be the completion of X loc with

respect to the maximal ideal of R̂h. We have the following commutative diagram:

X̂ //

��

X loc //

��

X h //

��

X ′ //

��

X

��

X loc = X loc

‖

// Xh

‖

// Xj

‖

// X

Spec R̂h SpecRh SpecRj

The closed substack X0 ⊆ X̃ is a quotient stack, so its unique closed point has affine
stabilizer, and it has the resolution property by Remark 3.9. By assumption, (GAGA) holds for

X̃ → Spec ÔX,x, so by Theorem 1.1(ii), X̃ = [U/GLn] for an affine scheme U . Since Spec R̂h →
Spec ÔX,x is an affine morphism, X loc → X̃ is affine, so U loc = U ×

X̃
X loc is an affine scheme

and X loc = [U loc/GLn]. By Remark 3.9, X loc has the resolution property.

Next, we show that X h has the resolution property. Let F be a coherent sheaf on X h.
By the previous paragraph, there is a vector bundle V loc on X loc with a surjection to F loc .
By [LMB00, Proposition 4.18(i)], the stack of rank n vector bundles on X , Hom(X , BGLn),
is locally of finite presentation over X. By Artin approximation [Art69, Theorem 1.12], there
exists a vector bundle V on X h such that the pullback of V to X0 is the same as the pullback
of V loc to X0. By Lemma 3.6 and Theorem 1.1(i), the pullback of V to X loc is isomorphic to
V loc . Since Hom(V,F) is locally of finite presentation and the substack of surjections is open in
Hom(V,F) [Lie06, Lemma 2.2.2], the substack of surjections is locally of finite presentation. By
Artin approximation, there exists a surjection V → F . This proves that X h has the resolution
property.

Let X h
0 denote the closed fiber of X h. The morphism X h

0 →X0 is a representable morphism
to a quotient stack. If X0 = [U/G], then X h

0 = [(U ×X0 X h
0 )/G], so X h

0 is a quotient stack.
In particular, the closed point of X h has affine stabilizer, so by Remark 3.9, X h = [P h/GLn]
for some affine scheme P h. The GLn-torsor P h → X h corresponds to a representable map
ph : X h → BGLn. Since Hom(X , BGLn) is locally of finite presentation over Xh and since
Rh = lim−→Ri, where the limit runs over all étale neighborhoods Xi = SpecRi → SpecR of

x, we have that ph is the pullback of some pi : Xi = X ×X Xi → BGLn. Let Qi → Xi be
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the corresponding GLn-torsor. To finish the proof, it suffices to show that there exists an étale
neighborhood Xj → Xi such that Qj = Qi ×Xi Xj is an affine scheme.

Since X is locally Noetherian, Xh is Noetherian [EGA IV, Proposition 18.8.8(iv)]. As P h

is of finite type over Xh, it is finitely presented over Xh, so there exist an étale neighborhood
Xj0 → Xi and an affine scheme Pj0 over Xj0 such that we have P h ∼= Pj0 ×Xj0

Xh. Let Qj0 =
Qi×XiXj0 . By [LMB00, Proposition 4.18(i)], HomXj0

(Qj0 , Pj0) and HomXj0
(Pj0 ,Qj0) are locally

of finite presentation over Xj0 , so there exists an étale neighborhood Xj1 → Xj0 such that the
isomorphism f : Qi×XXh = Qj0×Xj0

Xh → Pj0×Xj0
Xh = P h and its inverse g are the pullbacks

of maps f1 and g1 which are defined over Xj1 . By [LMB00, Proposition 4.18(i)], there is an étale
neighborhood Xj → Xj1 such that the compositions f1 ◦ g1 and g1 ◦ f1 pull back to the identities
over Xj . This shows that Qj ∼= Pj is an affine scheme, as desired.

Remark 6.3. In the proof of Proposition 6.1, the formal GAGA hypothesis is only used to show
that X loc has the resolution property. If this can be obtained in some other way (for example if

formal GAGA holds for X loc → Spec ÔhX,x), the rest of this proof works as above.

Because of results like Proposition 6.1, and more generally because of the strategy presented
in Remark 1.5, it is desirable to have a classification of stacks which have a point as a good
moduli space. It is not known which such stacks are quotient stacks.

Question 6.4. Does there exist a good moduli space morphism Y → Spec k, with k a separably
closed field, such that Y has affine diagonal but is not a quotient stack? (Note: a forthcoming
result resolves this question in the negative; see Remark 1.2.)

Remark 6.5. One natural source of examples is non-trivial gerbes. By [EHKV01, Example 3.12]
there are Gm-gerbes which are not quotient stacks. If X is a Gm-gerbe over a Noetherian
scheme X, then X is a quotient stack if and only if its class in H2(X,Gm) is in the image of the
Brauer map Br(X)→ H2(X,Gm) [EHKV01, Theorem 3.6]. However, if X = SpecA, where A is
a complete local ring (for example a field), then by [Mil80, Corollary IV.2.12],3 the natural map
Br(X)→ H2(X,Gm) is an isomorphism, so any Gm-gerbe over SpecA is a quotient stack.

Remark 6.6. Another candidate counterexample is M6m
0 , the moduli stack of genus zero prestable

(that is, nodal) curves with at most m nodes. Over any field K and for any m > 2, M6m
0 is

not a quotient stack [Kre13, Proposition 5.2]. The map M6m
0 → SpecK is universal for maps to

algebraic spaces. However, it is not a good moduli space map since closed points of M6m
0 can

have non-reductive stabilizers: each outer leaf of any tree T of smooth rational curves contributes
a copy of AutA1 ∼= GmnGa to AutT . But by [Alp09, Proposition 12.14], the stabilizers at closed
points of a stack which has a good moduli space are linearly reductive.

A promising variant is M6m
0,n , the moduli stack of marked genus zero prestable curves with n

marked points and at most m nodes, such that each component has at least two marks/nodes.
The closed points of this stack have linearly reductive stabilizers, and the stack is non-empty
for n > 2. For m > 2, we sketch a modification of Kresch’s argument to show that M6m

0,n is not

a quotient stack. There is an open immersion M62
0,n ⊆ M6m

0,n , so it suffices to show that M62
0,n is

not a quotient stack. There is a representable morphism M̃62
0,n →M62

0,n from the stack in which
the points are labeled, so it suffices to check that the former is not a quotient stack. There is
a morphism M̃62

0,2 → M̃62
0,n given by adding points in a prescribed fashion, which is a trivial

3Note that in contrast to [EHKV01], Milne defines Br′(X) = H2(X,Gm) (p. 147).
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Gm-gerbe over its image (for n > 3), so it suffices to check that M̃62
0,2 is not a quotient stack. A

straightforward modification of the proof of [Kre13, Proposition 5.2] shows that M̃62
0,2 is not a

quotient stack.

For n > 3 and m > 2, there are curves which isotrivially degenerate to multiple closed points,
so M6m

0,n cannot have a good moduli space by [Alp09, Proposition 4.16(iii)]. The stack M62
0,2 has

a unique closed point (topologically, it is a chain of three points), and the map to a point is
universal for maps to algebraic spaces. If this map were a good moduli space morphism, it would
answer Question 6.4 affirmatively.

Remark 6.7. Suppose that X → SpecA is a good moduli space as in Section 2, with k = A/m
separably closed. Suppose that X has affine diagonal, and satisfies [Alp10, Conjecture 1] (by
Remark 5.5, we cannot expect this unless X has affine stabilizers). Let Gx be the stabilizer of the
unique closed point x of X . Then there are a representable étale morphism f : W = [U/Gx]→X
and a point w ∈ W(k) such that the induced map AutW(k)(w) → AutX (k)(x) = Gx is an
isomorphism. Suppose that the strong form of this conjecture holds (that is, that we may take
U = SpecR to be affine; see [Alp10, second paragraph after Conjecture 1]).

(This argument was suggested to us by Jarod Alper.) Let W = [SpecR/Gx] → X be as
above. By [Alp09, Theorem 5.1], the induced map on good moduli spaces SpecRGx → SpecA
is étale. Since A is complete with separably closed residue field, the component of SpecRGx

containing the image of w must be isomorphic to SpecA, so after shrinking SpecR, we may
assume that f : W →X induces an isomorphism of good moduli spaces.

We claim that f is an isomorphism. Since f is étale, its image is open. Any open set containing
the unique closed point x of X is all of X , so f is an étale cover. We may check that a
morphism is an isomorphism étale locally on the base, so it suffices to show that the projection
p1 : W×X W →W is an isomorphism. By [Alp09, Proposition 4.7(i)]W×X W has good moduli
space SpecA×SpecASpecA = SpecA, so it has a unique closed point. The diagonalW →W×XW
has this closed point in its image. As the diagonal is a section of an étale morphism, it is an open
immersion, so it is an isomorphism.

The strong form of [Alp10, Conjecture 1] for stacks with affine diagonal therefore answers
Question 6.4 negatively: if A = k is a separably closed field, the argument above shows that X
is a quotient stack.

Remark 6.8. If the strong form of [Alp10, Conjecture 1] for stacks with affine diagonal is true, the
following argument shows that Conjecture 5.8 is true. In this case, the formal GAGA hypothesis
in Proposition 6.1 may be replaced by the hypothesis that X has affine diagonal.

Let Gx denote the stabilizer of the closed point x of X . By [Alp09, Proposition 12.14], Gx
is linearly reductive. Let W = [SpecR/Gx] → X and w ∈ W be as in [Alp10, Conjecture
1]. By [Alp09, Theorem 5.1], the map on good moduli spaces SpecRGx → SpecA is étale, so
after shrinking SpecR, we may assume that SpecRGx → SpecA is a finite étale extension. As
W and X ×SpecA SpecRGx are both étale over X , the induced morphism W → X ×SpecA

SpecRGx is étale. This morphism induces an isomorphism on good moduli spaces, and the image
contains the unique closed point of X ×SpecA SpecRGx . By the argument in Remark 6.7, the
map is an isomorphism. As W is a quotient stack, formal GAGA holds for W → SpecRGx by
Theorem 1.1(ii). By Theorem 4.4, formal GAGA holds for X → SpecA.
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