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Reduced classes and curve counting on surfaces I:

theory

Martijn Kool and Richard Thomas

With an appendix written with Dmitri Panov

Abstract

We develop a theory of reduced Gromov–Witten and stable pair invariants of surfaces
and their canonical bundles.

We show that classical Severi degrees are special cases of these invariants. This
proves a special case of the MNOP conjecture, and allows us to generalise the Göttsche
conjecture to the non-ample case. In a sequel we prove this generalisation.

We prove a remarkable property of the moduli space of stable pairs on a surface. It
is the zero locus of a section of a bundle on a smooth compact ambient space, making
calculation with the reduced virtual cycle possible.
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1. Introduction

Motivation

Fix a nonsingular projective surface S and a homology class β ∈ H2(S,Z). There are various
ways of counting holomorphic curves in S in class β; in this paper we focus on Gromov–Witten
invariants [Beh97, LT98] and stable pairs [PT09]. Since these are deformation invariant they
must vanish in class β if there exists a deformation of S for which the Hodge type of β is not
(1, 1). We can see the origin of this vanishing without deforming S as follows.

For simplicity work in the simplest case of an embedded curve C ⊂ S with normal bundle
NC = OC(C). As a Cartier divisor, C is the zero locus of a section sC of a line bundle L := OS(C),
giving the exact sequence

0 −→ OS
sC−→ L −→ NC −→ 0 .

The resulting long exact sequence describes the relationship between first order deformations
and obstructions H0(NC), H1(NC) of C ⊂ S, and the deformations and obstructions H1(OS),
H2(OS) of the line bundle L→ S:

0 −→ H0(L)
/
〈sC〉 −→ H0(NC) −→ H1(OS) −→ H1(L)

−→ H1(NC) −→ H2(OS) −→ H2(L) −→ 0 . (1)

The resulting “semi-regularity map” [KS59] H1(NC)→ H2(OS) = H0,2(S) takes obstructions to
deforming C to the “cohomological part” of these obstructions. Roughly speaking, if we deform S,
we get an associated obstruction in H1(NC) to deforming C with it; its image in H0,2(S) is the
(0, 2)-part of the cohomology class β ∈ H2(S) in the deformed complex structure. Thus it gives
the obvious cohomological obstruction to deforming C: that β must remain of type (1, 1) in the
deformed complex structure on S.

In particular, when S is fixed, obstructions lie in the kernel of H1(NC) → H2(OS). More
generally, if we only consider deformations of S for which β remains (1, 1) then the same is
true. And when h0,2(S) > 0 but H2(L) = 0, the existence of this trivial H0,2(S) piece of the
obstruction sheaf guarantees that the virtual class vanishes.

So it would be nice to restrict attention to surfaces and classes (S, β) inside the Noether-
Lefschetz locus (the locus of surfaces S for which β ∈ H2(S) has type (1, 1); for more details see
[Voi13, MP13]) defining a new obstruction theory using only the kernel of the semi-regularity
map.1 Checking that this kernel really defines an obstruction theory in the generality needed to
define a virtual cycle – that is, for deformations to all orders, over an arbitrary base, of possibly
non-embedded curves – has proved difficult; there is a hotchpotch of results in different cases

1For embedded curves, this means we use the obstruction space H1(L) to deforming sections of L. We have
been able to remove the obstructions H2(OS) to deforming L since the space of line bundles is smooth over the
Noether-Lefschetz locus.
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[BeF98, BL00, Blo72, BuF03, Don90, IM13, KL07, Lee04, Li02, Liu00, Man07, MP13, MPT10,
OP10, Ran99, Ros12, Sch12, STV13]. Here we give quite a general construction using a mixture
of some of these methods. Since this paper appeared, Jon Pridham has found a more general
solution [Pri12] using derived deformation theory, ∞-stacks, etc. His result is broader and more
natural, but our methods are much more elementary.

Our results

Surfaces. For stable pairs on S we get optimal results. We show that the kernel of the semi-
regularity map gives a reduced perfect obstruction theory, virtual cycle and invariants whenever

H2(L) = 0 for effective line bundles L with c1(L) = β . (2)

Equivalently, by Serre duality, the condition is that there is no curve in class β which is contained
in a canonical divisor of S. This condition is necessary to ensure the semi-regularity map (1) is
surjective.

For Gromov–Witten theory, multiple covers complicate the situation, but we are able to prove
the same result for the moduli space of stable maps when

H1(TS)
∪β−→ H2(OS) is surjective. (3)

Here β ∈ H1(ΩS) and we use the pairing ΩS ⊗ TS → OS . Condition (3) implies (2): for any
L = O(C) in class β, the map ∪β factors through

H1(TS) −→ H1(OC(C)) −→ H2(OS),

so surjectivity implies that H2(L) = 0 by the exact sequence (1).

Condition (3) is a transversality assumption on the moduli space of surfaces S. It asks that
the h2,0(S) equations∫

β
σi = 0, {σi : i = 1, . . . , h2,0(S)} a basis for H2,0(S)

cutting out the Noether-Lefschetz locus are transverse to 0. In particular if the moduli space of
surfaces is smooth, it asks that the Noether-Lefschetz locus be smooth of the expected codimen-
sion h2,0(S). For example, we note that for degree d > 4 surfaces S ⊂ P3, it is almost always
satisfied in a precise sense [Kim91, Section 3].

Method. We embed S as the central fibre of an algebraic twistor family2

SB → B .

Here B is a first order Artinian neighbourhood of the origin in a certain h0,2(S)-dimensional
family of first order deformations of S.

In Section 2 we show that condition (3) implies that the relative moduli space of curves
(stable maps or stable pairs) on the fibres of SB is in fact the moduli space of curves on the
central fibre. We then show that the natural perfect obstruction theory of the family (its relative
perfect obstruction theory made absolute) is isomorphic to the kernel of the semi-regularity map
on the standard obstruction theory. Thus the latter, which is canonical, can indeed be used as

2This is an outrageous abuse of notation, motivated by the S = K3 case where it is a first order neighbourhood
of the central fibre in the twistor family used in [BL00]. It should also be noted that the family is not canonical,
but involves choices.
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an obstruction theory, giving a definition of reduced curve counting invariants. These coincide
with the usual invariants when h0,2(S) = 0.

This use of relative moduli spaces means that we require condition (3) only for β. When
condition (3) holds also for all β′ < β then the absolute moduli space of curves in SB also
coincides with the moduli space for S, and the ordinary Gromov–Witten invariants of the total
space SB can be expressed in terms of the reduced Gromov–Witten invariants of S with so-called
KS-twisted λ-class insertions. (These are Chern classes of the virtual bundle whose fibre over
f : C → S ⊂ SB is RΓ(f∗KS). For the K3 case see [MPT10].)

Threefolds. We also work on the Calabi-Yau threefold

(X = KS) x C∗ ,

always using condition (3) in this case. Again we get a reduced obstruction theory, and use
C∗-localisation to define reduced residue Gromov–Witten and stable pair invariants. The former
come entirely from the moduli space of stable maps to S itself and include the reduced invariants
of S. More generally they include some λ-classes twisted by KS . The moduli space PC∗

X of stable
pairs fixed by the C∗-action, however, contains stable pairs not scheme-theoretically supported
on S, so the moduli space is bigger than the moduli space PS of stable pairs on S. But PS ⊂ PC∗

X

forms a connected component, so the reduced residue invariants of X contain a contribution
coming entirely from S. This contribution includes the reduced invariants of S, and more generally
signed virtual Euler characteristics of loci in PS satisfying incidence conditions. In the sequel
[KT14], we describe conditions under which PS is all of PC∗

X .

Insertions and Severi degrees. In Section 4 we develop a careful treatment of insertions
in these theories. We then prove various folklore results about them, such as the link to the
Picard variety and sublinear systems. (The existing literature only handles these issues within
symplectic geometry.)

In Section 5 we use this to show that with the right insertions, the reduced Gromov–Witten
invariants recover the Severi degrees

nδ(L) := deg {C ∈ |L| : C has δ nodes} ⊂ |L| (4)

of appropriately ample linear systems |L| on S.

In this case we are also able to show that only PS ⊂ PC∗
X contributes to the stable pair

invariants ofX. Therefore the threefold MNOP conjecture [MNOP06] applied toX (and extended
to the reduced C∗-localised invariants) predicts that the nδ(L) should also be expressible as a
precise combination of reduced stable pair invariants of S. We prove this in Theorem 5.4.

This also points to a definition of virtual Severi degrees in the non-ample case via reduced
Gromov–Witten or stable pair invariants. Moreover, we give an extension of the Göttsche conjec-
ture to these virtual numbers, that is, that they should be computed by the Göttsche polynomials
even when the latter are not obviously enumerative. In the sequel [KT14] we compute the re-
sulting stable pair invariants and prove this version of the conjecture.

Stable pairs as a zero locus. In Appendix 5.2, written with Dmitri Panov, we give an
alternative, more direct, construction of the reduced stable pair theory on a surface S, without
reference to SB. This is achieved by realising the moduli space in the following way. We first take
the zero locus of a natural section of a bundle over a smooth ambient space, then we take the
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zero locus of a section of another bundle over that.

After posting this paper we discovered that the first step here was used many years ago by
Dürr, Kabanov and Okonek [DKO07], giving a description of the virtual cycle on the Hilbert
scheme of curves in S. We then extend this to stable pairs over those curves.

This is an unusual phenomenon. Having a local description of a moduli space as the zero
locus of a section of a bundle E over a smooth ambient space A with

dimA− rankE = v

is basically equivalent to having a perfect obstruction theory of virtual dimension v. But having
such a description globally, for some compact A and the same v, is extremely rare. It is also
extremely desirable: it means the pushforward to A of the virtual cycle is Poincaré dual to ctop(E),
with which one can try to calculate.

We exploit this in the sequel [KT14] to calculate the reduced stable pair invariants in terms
of universal formulae in topological numbers3 of (S, β). In forthcoming work [PT14], this also
provides one of the foundations of a computation of the full stable pairs theory of the twistor
family of a K3 surface. Via Pandharipande and Pixton’s recent proof of the MNOP conjecture
for many threefolds, this then gives a proof of the famous KKV formula for the Gromov–Witten
invariants of K3 surfaces in all genera, degrees and for all multiple covers.

Except for genus zero Gromov–Witten calculations in complete intersections in convex va-
rieties, we know of no other moduli problem where such direct calculation is possible. Usually
obtaining explicit results is very complicated, involving various difficult degeneration and local-
isation tricks.

Organisation. The paper is organised as follows. Most results are proved twice, once for stable
maps, and an analogous result for stable pairs. We work out the reduced obstruction theories in
Section 2 assuming condition (3). In Appendix 5.2 we use an easier construction to show that
condition (3) can be replaced by condition (2) for stable pairs on S only. In Section 3 we define
the corresponding reduced invariants for S, the reduced residue invariants of X = KS , and we
show the latter contain the information of the former. Section 4 deals with insertions and linear
systems of curves in S. Section 5 discusses the application to Severi degrees and the MNOP
conjecture for reduced invariants with many point insertions.

In summary, we describe invariants incorporating the following:

– reduced Gromov–Witten and stable pair invariants of S

– Gromov–Witten and stable pair invariants of S when H2,0(S) = 0

– reduced equivariant Gromov–Witten and stable pair invariants of KS

– equivariant invariants of KS when H2,0(S) = 0

– reduced GW invariants of S with KS-twisted λ-class insertions

– relative Gromov–Witten and stable pair invariants of SB → B

– absolute Gromov–Witten invariants of SB
– absolute equivariant Gromov–Witten invariants of KSB/B

– Severi degrees and virtual Severi degrees

3In contrast, the nonreduced stable pair invariants of S do not have such a simple form in general, depending
on the Seiberg-Witten invariants of S. See [Koo13], where a duality formula is also obtained, and the MNOP
conjecture is related to Taubes’ SW=GW correspondence.
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Notation

Throughout we keep largely to the following notation.

S a smooth projective surface

X, X the total space of the canonical bundle KS of S and its
projective completion P(KS ⊕OS) respectively

V ⊃ B choice (5) of h0,2(S)-dimensional subspace of H1(TS)
and first order thickening (6) of its origin

SB, XB, XB (6) the algebraic twistor family of S over the Artinian
base B, its relative canonical bundle and completion

ι, q inclusion map of S into X, X and projection q : X,X → S
β a class in H2(S,Z), usually of Hodge type (1, 1)
h the arithmetic genus of curves in class β, determined by

the adjunction formula 2h− 2 = β2 −
∫
β c1(S)

L a line bundle on S with c1(L) = β
condition (2) H2(L) = 0 for effective line bundles L with c1(L) = β

condition (3) H1(TS)
∪β−→ H2(OS) is surjective

γi (49) integral basis γ1, . . . , γb1(S) of H1(S,Z)/torsion,

oriented with respect to the complex structure on H1(S,R)
div (46) divisor class in S of a stable map
det (46) line bundle associated to above divisor class
[γ] Poincaré dual of homology class γ
P Poincaré line bundle on S × Pic(S)
t, t = c1(t) one dimensional irreducible representation of T = C∗ of

weight one, and generator of H∗(BC∗,Z) = Z[t] respectively

Mg,n(S, β) moduli space of stable maps from connected genus g
curves with n marked points to S in class β

Mg(S, β) as above but without marked points, that is, n = 0

Mg,n(S,Pδ) (51) stable maps whose divisor class lies in a given linear
system Pδ ⊂ |L|

Pn(S, β) moduli space of stable pairs (F, s) on S with curve class
β and holomorphic Euler characteristic χ(F ) = n

Rg,β (30) reduced Gromov–Witten invariant ∈ Q
Rg,β (34) reduced residue Gromov–Witten invariant ∈ Q(t)
P redn,β (44) reduced stable pair invariant ∈ Z
Pred
n,β reduced residue stable pair invariant ∈ Z(t); see (35) for

X and (45) for S
rg,β (65) reduced residue Gopakumar–Vafa BPS invariants
g = g(C) arithmetic genus of a curve C

g := g(C) geometric genus = arithmetic genus of normalisation C
nδ(L) (60) Severi degree counting δ-nodal curves in

δ-dimensional linear subsystems Pδ of |L|
Hβ ⊂ Hγ (74) Hilbβ(S) embedded in Hilbγ:=[A]+β(S) by C 7→ C +A
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2. Reduced obstruction theories

2.1 The algebraic twistor family SB
Fix a projective surface S, and let m denote the maximal ideal at the origin 0 ∈ H1(TS). The
first order neighbourhood of the origin

Spec OH1(TS)/m
2

has a cotangent sheaf whose restriction to the origin is H1(TS)∗. Over this Artinian space lies a
tautological flat family of surfaces S with Kodaira–Spencer class the identity in H1(TS)∗⊗H1(TS)
parametrising the extension

0 −→ H1(TS)∗ ⊗OS −→ ΩS |S −→ ΩS −→ 0 .

Now fix a class β ∈ H1,1(S)∩(H2(S,Z)/torsion) for which H1(TS)
∪β−→ H2(OS) is a surjection.

Picking a splitting we get a h0,2(S)-dimensional subspace V ⊂ H1(TS) such that

∪β : V → H2(OS) (5)

is an isomorphism. Restricting the family S to V gives a flat family

SB over B := Spec OV /m2 = Spec
(
C⊕ V ∗

)
(6)

and an exact sequence of Kähler differentials

0 −→ ΩB|S −→ ΩSB |S −→ ΩS −→ 0 . (7)

In the first term we have suppressed the pullback map from the base; the result is V ∗⊗OS . The
extension class of (7) – the Kodaira–Spencer class in H1(TS ⊗ V ∗) = Hom(V,H1(TS)) of the
family SB – induces an isomorphism

V //

'
44

H1(TS)
∪β // H2(OS) . (8)

There is a canonical isomorphism [Blo72, Proposition 3.8]

H2
dR(SB/B) ∼= H2(S,C)⊗C OB .

So corresponding to β ⊗ 1 we get the horizontal lift of β:

βB ∈ H2
dR(SB/B) .

By projection we obtain a class

[βB]0,2 ∈ H2
dR(SB/B)/F 1H2

dR(SB/B) ,

where F 1H2
dR(SB/B) is the part of the Hodge filtration defined by Ω>1

SB/B. The scheme theoretic

Noether–Lefschetz locus in B is defined to be the zero locus of [βB]0,2. The family SB was
constructed precisely to ensure the following.

Lemma 2.1. The Noether–Lefschetz locus in B is just the closed point 0 ∈ B.
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Proof. Since β has type (1, 1) on the central fibre S, [βB]0,2 certainly vanishes at the origin 0.
Next pick any nonzero tangent vector v ∈ V , thus defining a subscheme Bv ⊂ B by intersecting
B with the span Cv ⊂ V (equivalently, define Bv via the ideal 〈v〉⊥ ⊂ V ∗ ⊂ OB). By [Blo72,
Proposition 4.2], Bv lies in the Noether–Lefschetz locus if and only if

∇(β) = 0 in H2(OS). (9)

Here ∇ [Blo72, (4.1)] is the map given by cup product with the Kodaira–Spencer class of SBv ,
that is, the image of v ∈ V under the first arrow of (8). By (8) then, (9) does not hold, so Bv is
not in the Noether–Lefschetz locus.

Denote by j : S ↪→ SB the inclusion of the central fibre, and denote by Mg,n(SB/B, βB)→ B
the moduli space of stable maps of connected genus g curves with n marked points to the fibres
of SB → B.

Proposition 2.2. Recall that we are assuming condition (3). Then the natural morphism of
stacks j∗ : Mg,n(S, β)→Mg,n(SB/B, βB) is an isomorphism.

Proof. Since Mg,n(SB/B, βB)×B {0} ∼= Mg,n(S, β) we need only prove the following.

Suppose we have an Artinian scheme A with a morphism to B, a proper flat family C → A and
a B-morphism h : C → SB which pulls back to a stable map h0 : C0 → S satisfying h0∗[C0] = β.
Then we want to show that A→ B factors through 0 ∈ B.

Now define SA/A := SB ×B A with horizontal class

βA := β ⊗ 1 ∈ H2
dR(SA/A) ∼= H2(S,C)⊗C OA .

It is the pullback of βB via A → B. [Blo72, Proposition 5.6] defines the class h∗[C] = βA ∈
F 1H2

dR(SA/A). In particular [βA]0,2 ∈ H2
dR(SA/A)/F 1H2

dR(SA/A) is zero, so that the image of A
lies in the zero locus of [βB]0,2, which by Lemma 2.1 is scheme-theoretically just the closed
point 0 ∈ B.

We are also interested in the threefold X = KS that is the total space of the canonical
bundle of S. For technical reasons it is often convenient to work on its projective completion
X := P(KS ⊕OS).

Let β ∈ H2(S) and ι : S ↪→ X be the inclusion of the zero section. Since X is a P1-bundle
over S, there are canonical isomorphisms H1(TX) ∼= H1(TS) and H i,j(S) ∼= H i+1,j+1(X) when
i+ j = 2, intertwining ∪β with ∪ ι∗β. Associated to the family SB → B (6) we also get families
of threefolds XB → B and XB → B, with natural inclusions from SB which we also denote by ι.
As before we let j denote any of the inclusions of the central fibres S,X,X into the families
SB,XB,XB.

In addition to the moduli space of stable maps Mg,n(X, ι∗β) to X, we will also want to use
moduli spaces of stable pairs [PT09] on S and X.

Denote by Pn(X, ι∗β) the (fine) moduli space of stable pairs (F, s) on X with ch2(F ) = ι∗β
and holomorphic Euler characteristic χ(F ) = n. Similarly, Pn(XB/B, ι∗βB) is the relative moduli
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space of stable pairs on the fibres of XB → B. We can repeat these definitions for S and SB/B
for stable pairs (F, s) with c1(F ) = β and χ(F ) = n.

Proposition 2.3. Assuming condition (3), the natural morphisms

(i) j∗ : Mg,n(S, β)→Mg,n(SB/B, βB),

(ii) j∗ : Mg,n(X, ι∗β)→Mg,n(XB/B, ι∗βB),

(iii) j∗ : Pn(S, β)→ Pn(SB/B, βB) and

(iv) j∗ : Pn(X, ι∗β)→ Pn(XB/B, ι∗βB)

are isomorphisms.

Proof. The first is Proposition 2.2. The same proof, with h∗[C] replaced by c1(F ), gives state-
ment (iii).

For statements (ii) and (iv), the proof is the same once we replace h∗[C] by ch2(F ) and
H2
dR(SB/B)/F 1H2

dR(SB/B) by H4
dR(XB/B)/F 2H4

dR(XB/B).

2.2 Stable maps

In this section we abbreviate the notation Mg,n(S, β) for the moduli space of stable maps with n
marked points to M . When n = 0 and f : C ↪→ S is an embedded curve with normal bundle NC ,
the natural deformation-obstruction theory for stable maps is

E• := RΓ(NC)∨

at the point f ∈M . This naturally extends to a two-term complex over M with a morphism
to the truncated cotangent complex LM := τ>−1L•

M
of M . The semi-regularity map h1((E•)∨) =

H1(NC)→ H2(OS) of (1) is Serre dual to the composition

H0(KS) −→ H0(f∗ΩS ⊗ f∗ΩS) −→ H0(N∗C ⊗ ωC) , (10)

where all of the maps are the obvious ones.

For a general stable map f : (C, x1 . . . , xn) → S, we replace N∗C by the complex {f∗ΩS →
ΩC(x1 + . . .+xn)}. Here f∗ΩS is placed in degree 0. When C is embedded and n = 0, the arrow
is surjective so the complex is indeed quasi-isomorphic to its kernel N∗C . More globally, denote
the universal curve by

C f //

π ��

S

M .

(11)

Then the perfect obstruction theory of Gromov–Witten theory is [Beh97, BeF97]

E• :=
(
Rπ∗RHom

({
f∗ΩS → Ωlog

C/M

}
,OC

))∨
−→ LM , (12)

where

Ωlog

C/M := ΩC/M (x1 + · · ·+ xn) (13)
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and x1, . . . , xn are the sections of the universal curve defining the marked points. Since marked
points are always smooth points of the curve, (13) is the sheaf of logarithmic one-forms. Letting
ωC/M be the relative dualising line bundle, consider the composition of the following standard
maps

f∗KS
// f∗ΩS ⊗ f∗ΩS

�� ''{
f∗ΩS

// ΩC/M
}
⊗ ΩC/M

//
{
f∗ΩS → Ωlog

C/M

}
⊗ ωC/M .

(14)

The composition f∗KS → ΩC/M ⊗ ΩC/M of the first arrow and the dotted arrow is zero since it

factors through Λ2ΩC/M = 0. Therefore (14) defines a map of complexes

f∗KS −→
{
f∗ΩS → Ωlog

C/M

}
⊗ ωC/M .

Composing with H0(KS)→ H0(f∗KS) and applying Rπ∗ we get the (dual) semi-regularity map

H0(KS)⊗OM −→ E•[−1] , (15)

which reduces to (10) when f is an embedding and there are no marked points. Dualising and
taking h1 gives

ob −→ H2(OS)⊗OM , (16)

where ob := h1((E•)∨) is the obstruction sheaf on M . We will see that this is a surjection in the
proof of Theorem 2.4.

We define the reduced obstruction theory of M to be the cone on the map (15):

E•red := Cone
(
H0(KS)⊗OM [1]→ E•

)
.

Its name is justified by the next result.

Theorem 2.4. Suppose that β ∈ H2(S,Z) is a (1, 1) class such that H1(TS)
∪β−→ H2(OS) is

surjective. Then there is a perfect obstruction theory4 E•red → LM for Mg,n(S, β) with virtual
dimension

v := g − 1 +

∫
β
c1(S) + n+ h0,2(S) . (17)

Proof. By [Beh97, BeF97] the relative obstruction theory for Mg,n(SB/B, βB) is

E•rel :=
(
Rπ∗RHom

({
f∗ΩSB/B → Ωlog

C/M

}
,OC

))∨
−→ LMg,n(SB/B,βB)/B , (18)

4While E•
red is canonical, we are currently unable to prove that the map E•

red → LM is independent of the choice
(5) made to define the algebraic twistor family SB . But the induced virtual cycle is canonical, since it only depends
on the K-theory class of E•

red [Pid91, Sie04].
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where the maps are those of the universal diagram

C f //

π
��

SB

Mg,n(SB/B, βB) .

By Proposition 2.2, Mg,n(SB/B, βB) ∼= M and the above diagram factors through the dia-
gram (11) for S instead of SB. Therefore in fact E•rel is just E• (12), giving a perfect relative
obstruction theory

E• −→ LM/B . (19)

Even though B is not smooth, its simple form – and the fact that M is supported over the
reduced point 0 ∈ B – means that there is an exact triangle

ΩB|M −→ LM −→ LM/B −→ ΩB|M [1] , (20)

where again we have suppressed the pullback map from B. Explicitly, embed M into an ambient
stack A → B which is smooth over B, and let I denote the ideal of M ⊂ A. Then the triangle
comes from the horizontal exact sequence of vertical complexes

I/I2

��

I/I2

��
0 −→ ΩB|M // ΩA|M // ΩA/B|M −→ 0 ,

where the exactness of the bottom row follows from the smoothness of A → B. From (19)
and (20) we get a map E•[−1]→ ΩB|M whose cone we define to be F •:

F •

��

// E•

��

// ΩB|M [1]

LM // LM/B
// ΩB|M [1] .

(21)

To show that F • = Cone
(
E•[−1] → ΩB|M

)
is quasi-isomorphic to E•red = Cone

(
H0(KS) ⊗

OM [1]→ E•
)

it is sufficient to show that the composition

H0(KS)⊗OM −→ E•[−1] −→ ΩB|M
is an isomorphism. The dual of this isomorphism says that moving in any direction in B, our
curve is obstructed at first order since its cohomology class acquires a nonzero (0, 2) part [β]0,2.
It also proves the surjectivity claimed in (16).

Applying h0 we have

H0(KS)⊗OM −→ R0π∗
({
f∗ΩS → Ωlog

C/M

}
⊗ ωC/M

)
−→ ΩB|M . (22)

Recalling the definition of the dual semi-regularity map (15) via the diagram (14) we see this
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factors through

H0(KS)⊗OM −→ R0π∗(f
∗ΩS ⊗ ωC/M ) −→ ΩB|M , (23)

where the first arrow is the obvious map pulling back two-forms to C. By Lemma 2.5 below the
second arrow – induced by the Kodaira–Spencer map of M/B in the bottom row of (21) – is the
same as the one

R0π∗(f
∗ΩS ⊗ ωC/M ) −→ R1π∗(ΩB|M ⊗ ωC/M ) ∼= ΩB|M (24)

induced by the Kodaira–Spencer map ΩS → ΩB|M [1] (7) of SB/B. The composition is therefore
the dual of (8) pulled back to M , which is indeed an isomorphism.

By the long exact sequences in cohomology of diagram (21), and the fact that E• is a perfect
relative obstruction theory, we see that F • has cohomology only in degrees −1, 0 and that
F • → LM is an isomorphism on h0 and a surjection on h−1. And since E• is quasi-isomorphic
to a two-term complex of vector bundles {E−1 → E0}, so is F • locally:

F • ' {E−1 → E0 ⊕ ΩB|M} .

(We work locally to obtain the map E−1 → ΩB from the fact that E−1 is free, thus defining
a projective module.) Working globally one can do the same thing by resolving by sufficiently
negative locally free sheaves, etc. Thus F • → LM is an absolute obstruction theory for M .

Lemma 2.5. The second arrow in (23) is the one induced by the Kodaira–Spencer map ΩS →
ΩB|M [1] (7) of SB/B.

Proof. LetM :=Mg,n denote the stack of prestable curves with n marked points, with universal
curve C →M.

In passing from (22) to (23) we have passed from the obstruction theory E• → LM/B (com-

posed with the Kodaira–Spencer map LM/B → ΩB|M [1] of M) to the relative obstruction theory

E• → LM/M×B (composed with the Kodaira–Spencer map LM/M×B → ΩB[1] of M/M). In

other words the second arrow in (23) is the composition

h−1(E•) −→ h−1(LM/M×B) −→ ΩB|M .

We recall the relative obstruction theory of M/M×B [Beh97, BeF97], using the maps

C ×MM
f //

π��

SB

M .

(25)

In fact, it is simpler to describe the dual of the perfect obstruction theory E• → LM/M×B; it

is the composition L∨
M/M×B → Rπ∗(f

∗TSB/B) of the top row of the diagram of vertical exact

345



M. Kool, R. P. Thomas

triangles

L∨
M/M×B

//

��

Rπ∗

(
π∗L∨

M/M×B ⊕ L∨C/M
)

��

Rπ∗L∨C×MM/M×B
(f∗)∨ //

��

Rπ∗f
∗L∨SB/B

��
L∨
M/M

//

��

Rπ∗

(
π∗L∨

M/M ⊕ L∨C/M
)

��

Rπ∗L∨C×MM/M
(f∗)∨ //

��

Rπ∗f
∗L∨SB

��
V // Rπ∗(π

∗V ) Rπ∗(π
∗V ) Rπ∗(π

∗V ) .

(26)

Here L∨SB/B is just the tangent bundle TSB/B since SB → B is smooth, V is the splitting of (5),

and we recall that ΩB|M ∼= V ∗.

Use the natural exact triangle of cohomologies

V −→ Rπ∗(π
∗V ) −→ R1π∗(π

∗V )[−1]

to remove R1π∗(π
∗V )[−1] from the lower and the middle terms in the right-hand column. In the

latter case we call the resulting cone (F•)∨. Now compose (26) horizontally and dualise, to give
a commutative diagram involving just the first and last columns:

LM/M×B E•oo

LM/M

OO

F•

OO

oo

V ∗

OO

V ∗ .

OO

oo

Rearranging gives

F•

��

// E•

��

// ΩB|M [1]

LM/M
// LM/M×B

// ΩB|M [1] ,

just as in (21), but for LM/M instead of LM . But (26) commutes, so the above diagram does

too. The top right-hand map is the one we are after (after taking h−1), and from the last column
of (26) we see that it is indeed the one induced by the Kodaira–Spencer map of SB over B.

If we work on X = P(KS⊕OS) instead of S we get a similar semi-regularity map by replacing
KS and ΩS in (14) by Ω2

X
and ΩX , respectively. Thus we remove H1,3(X) ∼= H0,2(S) from the

obstruction sheaf, and by very similar working obtain the following.

Theorem 2.6. Suppose that β ∈ H2(S,Z) is a (1, 1) class inducing a surjection ∪β : H1(TS)→
H2(OS). Then there is a perfect obstruction theory E•red → LM for Mg,n(X, ι∗β) with virtual
dimension h1,3(X) + n = h0,2(S) + n.
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2.3 Stable pairs

We sketch how the arguments of the last section are modified to prove the same result for stable
pairs. In Appendix 5.2 we use a different method to get a better result using only condition (2)
in place of (3).

As before we let X = P(KS ⊕OS) be the projective completion of the canonical bundle of S.
Let 0 6= β ∈ H2(S,Z) be of type (1, 1) and denote the inclusion of the zero section by ι : S ↪→ X.

Let P := Pn(X, ι∗β) be the moduli space of stable pairs on X with universal object I• =
{OX×P −→ F} over X × P . Using the projections

X × P
πP

!!

πX

}}
X P

(27)

and the relative dualising sheaf ωπP = π∗
X
ωX , the perfect obstruction theory for stable pair

theory of X is [PT09, Theorem 2.14]

E• := RπP∗(RHom(I•, I•)0 ⊗ ωπP )[2] −→ LP .

Here ( · )0 denotes the trace-free part, and the virtual dimension is
∫
ι∗β

c1(X) = 0. This gives an
obstruction sheaf

Ob := h1((E•)∨) = E xt2πP (I•, I•)0 ,
where E xtiπP denotes the ith cohomology sheaf of RπP∗RHom. Cupping with the Atiyah class
A(I•) ∈ Ext1(I•, I• ⊗ LX×P ) and taking the trace defines a semi-regularity map (E•)∨ →
H1,3(X)⊗OP [−1] by the composition

E xt2πP (I•, I•)0 ⊂ E xt2πP (I•, I•)
∪A(I•) // E xt3πP (I•, I• ⊗ LX×P ) −→

E xt3πP (I•, I• ⊗ π∗
X

ΩX)
tr−→ R3πP∗π

∗
X

ΩX
∼= H1,3(X)⊗OP . (28)

We will see in the proof of Theorem 2.7 that (28) is a surjection when (S, β) satisfy condition (3).
This also follows the obvious generalisation of [MPT10, Proposition 11] to all surfaces.

Dualising the composition

(E•)∨ −→ h1((E•)∨)[−1] −→ H1,3(X)⊗OP [−1]

gives a map

H2,0(X)⊗OP [1] −→ E• ;

let E•red be its cone.

Theorem 2.7. Assume that ∪β : H1(TS) → H2(OS) is surjective. Then there exists a perfect
obstruction theory E•red → LP for Pn(X, ι∗β) of virtual dimension h1,3(X) = h0,2(S).

Proof. Associated with the algebraic twistor family SB → B we get its family of projectively
completed canonical bundles XB → B. By Proposition 2.3 the family P := Pn(XB/B, ι∗βB)→ B
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of moduli spaces of stable pairs on the fibres is isomorphic to the space Pn(X,β) of stable pairs
on X.

In [MPT10, Section 3], a relative perfect obstruction theory E•rel is constructed

E•rel := RπP∗(RHom(I•, I•)0 ⊗ ωP×BXB/P )[2] −→ L•P/B .

Here XB×BP carries the universal object I• and has a projection πP to P with relative dualising
sheaf ωπP = π∗PωXB/B. As before, this can be made into a perfect absolute obstruction theory F •

by the diagram

F •

��

// E•rel

��

// ΩB[1]

LP // LP/B // ΩB[1] .

Since by Proposition 2.3 the stable pairs of P all lie scheme-theoretically on the central fibre X,
we see as before that in fact E•rel is just the usual complex E• of stable pair theory on X. But E•

has virtual dimension 0, so F • has virtual dimension h2,0(S). Therefore to prove the theorem we
are left with showing that the composition

F • −→ E• −→ E•red

is an isomorphism. It is sufficient to show that the composition

H0(Ω2
X

)⊗OP −→ E•[−1] −→ ΩB|M

is an isomorphism. By the Nakayama lemma we may do so at a point (F, s) ∈ P . After dualising
we get the map V → H1,3(X) given by the composition

V ⊂ H1(TS) = H1(TX)
∪A(I•) // Ext2(I•, I•)0 ⊂ Ext2(I•, I•)

∪A(I•) // Ext3(I•, I• ⊗ ΩX)
tr−→ H1,3(X) . (29)

This uses the stable pairs analogue of Lemma 2.5 (also proved in [MPT10, Proposition 13]) to
deduce that the composition of E• → LP/B and the Kodaira–Spencer map LP/B → ΩB[1] for P

coincides with the cup product of the Atiyah class and the Kodaira–Spencer class for X.

In the proof of [MPT10, Proposition 11], it is observed that the above composition H1(TX)→
H1,3(X) is equal to ∪(−2ι∗β). Thus on restriction to V ⊂ H1(TS) it gives −2 times the isomor-
phism ∪β of (8).
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3. Invariants

3.1 Reduced Gromov–Witten invariants

The reduced obstruction theory of Theorem 2.4 gives, by [BeF97], a virtual fundamental class
which we call the reduced class:

[Mg,n(S, β)]red ∈ H2v(Mg,n(S, β)) , v = g − 1 +

∫
β
c1(S) + n+ h0,2(S) .

Integrating insertion cohomology classes over this gives the reduced Gromov–Witten invariants
of S. Namely, if σi ∈ H∗(S,Z) are cohomology classes, then

Rg,β(S, σ1 . . . σn) :=

∫
[Mg,n(S,β)]red

n∏
i=1

ev∗i (σi) ∈ Q . (30)

Here evi is the evaluation map from the ith marked point of the universal curve to S. So for a
surface in the Noether–Lefschetz locus for β, the invariants give a virtual count of the curves in
homology class β which intersect PD(σi). Notice that the σi can be repeated, so for instance
Rg,β(S, σ21σ2) denotes Rg,β(S, σ1σ1σ2).

Remark 3.1. Deformation invariance. By standard theory (Section 7 of [BeF97]), the
Rg,β(σ1 . . . σn) are invariant under deformations of S within the Noether–Lefschetz locus. The
usual arguments apply: given a smooth curve Z mapping to the Noether–Lefschetz locus for β,
we can make all of the constructions of the previous sections relative to Z in the family over Z.
(We do not even need to change notation; we can work with affine Z and just let our ground
ring be OZ instead of C.) The resulting obstruction theory is relative to Z, and restricts to the
absolute obstruction theory of the previous section over any point of Z. As a result the relative
virtual cycle on the relative moduli space over Z pulls back, via the usual Gysin maps, to the
virtual cycle on any fibre [BeF97, Proposition 7.2]. The cohomology classes ev∗i (σ

i) are defined
on the relative moduli space, so by conservation of number [Ful98, Theorem 10.2], their inte-
grals over a fibre of the virtual cycle is independent of the fibre. The same applies to the other
invariants we define below.

In the usual way we can also define the same invariants (30) without using marked points.
Instead we use the universal map f : C → S from the universal curve π : C → Mg(S, β) :=
Mg,0(S, β). Then we claim that

Rg,β(S, σ1 . . . σn) =

∫
[Mg(S,β)]red

n∏
i=1

π∗f
∗(σi) . (31)
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In fact, we can remove one marked point at a time using the diagram

Mg,n(S, β)
evn

,,ρ **

r

!!

C
f
//

π
��

S

Mg,n−1(S, β) .

The map r forgets the nth marked point and stabilises the resulting curve and map, while ρ
maps the nth point to its image in the contracted curve. Since ρ is birational, we find that

r∗ ev∗n(σ) = r∗ρ
∗f∗(σ) = π∗f

∗(σ) . (32)

Iterating we can push all the way down from Mg,n to Mg. The compatibility of the ordinary
obstruction theories of Mg,n and Mg,n−1 is [Beh97, Axiom IV]. For the reduced theories the same
argument applies because they are defined by the semi-regularity map (15) which is compatible
with r: its construction (14) does not even see the marked points. The equality of (30) and (31)
follows.

Since Mg,n(X, ι∗β) ⊂ Mg,n(X, ι∗β) and Pn(X, ι∗β) ⊂ Pn(X, ι∗β) are open immersions, they
inherit the reduced obstruction theories of Theorems 2.6 and 2.7 by restriction. But they are
noncompact, so to define invariants we have to use residues and the virtual localisation formula.
The group T := C∗ acts with weight one on the fibres of X = KS with fixed locus S. Therefore
it acts on the moduli spaces Mg,n(X, ι∗β) and Pn(X, ι∗β). Its fixed loci are related to the curves
in the zero-section S. For stable maps we get precisely Mg,n(S, β).

Proposition 3.2. The inclusion MS ↪→ M
T
X is an isomorphism of stacks. Moreover E•X,red is

naturally T -equivariant and its restriction to MS has fixed and moving parts(
E•X,red|MT

X

)fix ∼= E•S,red ,(
E•X,red|MT

X

)mov ∼= (Rπ∗f
∗KS ⊗ t)∨ ,

where t is the irreducible representation of weight one.

Proof. The isomorphism

TX |S ∼= TS ⊕KS

induces an isomorphism on MS ,

E•X |MS

∼= E•S ⊕
(
Rπ∗(f

∗KS)
)∨
. (33)

The first summand carries the trivial T -action, the second carries the weight (−1) action induced
from the action on the fibres of KS .

We want to show that the inclusion MS ↪→ M
T
X is an isomorphism of stacks. It is sufficient

to show that it induces an isomorphism on maps from Spec An to the moduli space, where An
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is any Artinian C-algebra of length n. The n = 0 case is the obvious fact that MS ↪→ M
T
X is a

bijection of sets.

Inductively we fix a surjection An+1 → An with ideal I, and a map

a : Spec An →MS ↪→M
T
X .

We show that any lift to a map Spec An+1 →M
T
X factors through MS . By [BeF97, Theorem 4.5]

such a lift exists if and only if the obstruction class in Ext1(a∗(E•X |MT
X

)fix, I) vanishes. (Here we

have used the fact that the T -fixed part

(E•X |MT
X

)fix

of E•X |MT
X

provides an obstruction theory for M
T
X [GP99].)

By the isomorphism (33) this is the same as the obstruction in Ext1(a∗E•S , I) to finding a

lift to MS . So if a lift to M
T
X exists, so does one to MS . By [BeF97, Theorem 4.5] and (33) the

choices in such a lift are also the same

Hom(a∗(E•X |MT
X

)fix, I) ∼= Hom(a∗E•S , I) .

It follows that the lifts that factor throughMS map isomorphically to the lifts toM
T
X , as required.

Finally, by their very constructions, the semi-regularity maps of X, S intertwine the isomor-
phism (33):

H3,1(X)⊗OMS
[1]

��

H2,0(S)⊗OMS
[1]

��
E•
X
|MS

E•S ⊕
(
Rπ∗(f

∗KS)
)∨
.

Taking cones gives the isomorphisms

E•X,red|MS

∼= E•S,red ⊕
(
Rπ∗(f

∗KS)
)∨

over MS
∼= M

T
X .

Therefore we can define reduced Gromov–Witten residue invariants of X using Graber-

Pandharipande’s virtual localisation formula [GP99]. That is, via
(
E•X,red|MT

X

)fix
we get a perfect

obstruction theory for M
T
X and so a virtual cycle [M

T
X ]red. Then, given equivariant cohomology

classes Ai ∈ H∗T (MX), we define∫
[MX ]red

∏
i

Ai :=

∫
[M

T
X ]red

1

e(Nvir)

∏
i

Ai ∈ Q(t) .

Here t = c1(t) is the equivariant parameter – the generator of H∗(BT ) = Q[t] – and the virtual
normal bundle is defined to be

(
E•X,red|MT

X

)∨mov
. We may express this as a two-term complex
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E0 → E1 of equivariant bundles all of whose weights are nonzero so that the ctop(Ei) are invertible
in the localised equivariant cohomology ring. Here ctop is the T -equivariant top Chern class. Then

the virtual equivariant Euler class of
(
E•X,red

∣∣
M
T
X

)∨mov
is defined to be

e(Nvir) := ctop(E0)/ctop(E1) ∈ H∗T (M
T
X)⊗Q[t] Q(t) ,

and is independent of the choice of resolution. By Proposition 3.2, this gives∫
[MS ]red

1

e(Rπ∗f∗KS ⊗ t)

∏
i

Ai .

In particular we can define

Rg,β(X,σ1 . . . σn) :=

∫
[Mg,n(S,β)]red

1

e(Rπ∗f∗KS ⊗ t)

n∏
i=1

ev∗i (σi) (34)

in Q(t); compare (30). (Throughout we use curly letters to emphasise residue invariants in Z(t)
or Q(t); straight letters denote numerical invariants in Z or Q.)

Setting r := − rank(Rπ∗f
∗KS) = −χ(f∗KS) = g−1+

∫
β c1(S), we have 1/e(Rπ∗f

∗KS⊗ t) =

tr +O(tr−1). In particular, we have the following result.

Lemma 3.3. The leading coefficient of the reduced Gromov–Witten invariants of X (34) repro-
duces the reduced Gromov–Witten invariants of S (30):

Rg,β(X,σ1 . . . σn) = Rg,β(S, σ1 . . . σn) tr + O(tr−1) ,

where r = g − 1 +
∫
β c1(S).

Note our controversial use of the term “leading coefficient”: it is possible that this be zero
but that the whole polynomial Rg,β 6= 0.

3.2 Reduced stable pair invariants

The reduced obstruction theory of Theorem 2.7 restricts from Pn(X, ι∗β) to endow the open
set Pn(X, ι∗β) with a perfect obstruction theory E•X,red. The action of T = C∗ on the fibres of
X = KS defines a T -action on Pn(X, ι∗β) with respect to which E•X,red is T -equivariant. We will
define stable pair invariants of X using residues and the virtual localisation formula.

As usual let I• := {O → F} denote the universal complex over X×Pn(X, ι∗β). The universal
curve (the scheme-theoretic support of F) represents ch2(F). Using the usual projections (27),
we define the following cohomology class for each σi ∈ H∗(X,Z)

τ(σi) := πP∗
(
ch2(F) · π∗X(σi)

)
∈ H∗(Pn(X, ι∗β),Z) .

For nonzero β ∈ H2(X,Z), we would like to define the stable pair invariant with insertions by

Pred
n,β (X,σ1 . . . σm) :=

∫
[Pn(X,β)]red

(
m∏
i=1

τ(σi)

)
.
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We make sense of this as a residue by the virtual localisation formula [GP99]:

Pred
n,β (X,σ1 . . . σm) :=

∫
[Pn(X,β)T ]red

1

e(Nvir)

(
m∏
i=1

τ(σi)

)
∈ Z(t) . (35)

In contrast to the Gromov–Witten case, the fixed point locus can contain pairs that are supported
set-theoretically but not scheme-theoretically on S. However, we next check that PS = Pn(S, β)
does provide one connected component of the fixed locus. Therefore the invariants (35) have a
contribution coming entirely from S.

Over PS ⊂ PX we slightly modify our usual notation and let ι∗F denote the universal sheaf,
where ι : S ↪→ X is the inclusion of the zero-section. Then we have two universal complexes,

I•S := {OS×PS → F} on S × PS ,

and

I•X := {OX×PS → ι∗F} on X × PS .

Proposition 3.4. The subscheme Pn(S, β) ⊂ Pn(X,β)T is both open and closed in the fixed
locus. On this component, the obstruction theory E•X has fixed part

(E•X |PS )fix ∼= (RπP∗RHom(I•S ,F))∨ , (36)

and moving part its shifted dual

(E•X |PS )mov ∼= RπP∗RHom(I•S ,F)[1]⊗ t∗ (37)

twisted by the irreducible representation t∗ of weight −1.

Moreover, the reduced obstruction theory E•X,red|PS has the same moving part (E•X |PS )mov

and

(E•X,red|PS )∨fix ∼= Cone
(
RπP∗RHom(I•S ,F) −→ H0,2(S)⊗OPS [−1]

)
,

where the map is obtained as the composition

RπP∗RHom(I•S ,F) −→ RπP∗RHom(F,F)[1]
tr−→ RπP∗O[1]

τ>1

−→ R2πP∗O[−1] .

Proof. The triangle I•X → OX×PS → ι∗F gives the following commutative diagram of exact
triangles over PS :

RπP∗O[1]

id
��

RπP∗O[1]

��
RπP∗RHom(I•X , ι∗F) // RπP∗RHom(I•X , I•X)[1] //

��

RπP∗RHom(I•X ,O)[1]

��
RπP∗RHom(I•X , I•X)0[1] // RπP∗RHom(ι∗F,O)[2] .

By Serre duality down πP : X × PS → PS , the last term is

(RπP∗(ι∗F⊗ ωπP ))∨[−1] .
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But ι∗F is fixed by T , while ωπP is just the pullback of KX , which is trivial but with T -weight −1.
Therefore taking fixed parts removes this term and gives the isomorphism(

RπP∗RHom(I•X , ι∗F)
)fix ∼= (

RπP∗RHom(I•X , I•X)0
)fix

[1] (38)

over PS ⊂ P TX .

Remark 3.5. The complex (RπP∗RHom(I•X , ι∗F))∨ provides the natural obstruction theory for
the moduli space of stable pairs (F, s). This is essentially proved in [Ill71] once one combines it
with [BeF97, Theorem 4.5]: see [JS11, Sections 12.3–12.5] for a full account. However it is not per-
fect in general, and to define stable pair invariants one uses instead (RπP∗RHom(I•X , I•X)0[1])∨

[PT09]. The two theories give the same tangents, but different obstructions. Here we see that
they become the same on S ⊂ KS once we pass to fixed parts.

Following [PT10, Appendix C], we next consider the exact triangle

F⊗N∗S/X −→ Lι∗I•X −→ I•S ,

where now ι : S × PS ↪→ X × PS . Applying RπP∗RHom( · ,F) gives the exact triangle

RπP∗RHom(I•S ,F) −→ RπP∗RHom(I•X , ι∗F) −→ RπP∗RHom(F,F⊗KS) .

The first term has T -weight 0; the last has T -weight 1. Taking fixed parts,(
RπP∗RHom(I•X , ι∗F)

)fix ∼= RπP∗RHom(I•S ,F) . (39)

Combined with (38) this gives (36).

By [GP99], the left-hand side of (36) defines a perfect obstruction theory for P TX , while the
right-hand side defines one5 for PS . Since they are isomorphic over PS ⊂ P TX , the proof of
Proposition 3.2 now shows that PS ↪→ P TX is a local isomorphism, as claimed.

To derive (37) we use the Serre duality

RπP∗RHom(I•X , I•X)0[1] ∼= (RπP∗RHom(I•X , I•X ⊗ ωπP )0)
∨[−2] .

But ωπP
∼= O ⊗ t∗, so this says that

(E•X)∨ ∼= E•X [−1]⊗ t (40)

on restriction to PS ⊂ PX . We have already seen above that E•X |PS has T -weights only 0 and −1,
so tensoring with t makes moving parts fixed and vice-versa. Taking fixed parts of (40) therefore
gives (37).

Finally we have to identify the semi-regularity map on the obstruction theory. Since it is
T -equivariant, it is only nonzero on the fixed part. Recall its definition (28) by cupping with the
Atiyah class A(I•) of I• and taking the trace. From now on we work on the compactification X,

5This obstruction theory – the surface analogue of that in Remark 3.5 – is perfect. This is shown in J. Otterson’s
Ph.D. thesis at Imperial College London using the fact that F has relative dimension 1 support over PS , so
R>2πP∗F = 0, which combines with the exact triangle F[−1] → I•S → O to force E xt>2

πP (I•S ,F) to vanish. The
results of [GP99] together with (36) give a different proof of this fact.
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so I• now denotes the complex {OX×PS → ι∗F}. By the naturality of the Atiyah class [BuF03,
Proposition 3.11], the four left-hand squares in the following diagram commute. The right-hand
square commutes because tr(a ◦ b) = tr(b ◦ a). The unmarked arrows are all induced by the
connecting homomorphism ι∗F[−1]→ I•.

E xt2πP (I•, I•)
◦A(I•) // E xt3πP (I•, I• ⊗ LX×P )

trI• // R3πP∗ΩX

E xt1πP (I•, ι∗F)
◦A(ι∗F) //

??

E xt2πP (I•, ι∗F⊗ LX×P )

OO

E xt1πP (I•, ι∗F)
A(I•)◦ //

��

E xt2πP (I•, ι∗F⊗ LX×P )

��
E xt2πP (ι∗F, ι∗F)

A(ι∗F)◦ // E xt3πP (ι∗F, ι∗F⊗ LX×P )
trι∗F // R3πP∗ΩX .

Our semi-regularity map starts with the fixed part of E xt1πP (I•, ι∗F) on the left, takes it clock-
wise round the diagram to R3πP∗ΩX . Therefore this is the same as going anticlockwise, via
E xt2πP (ι∗F, ι∗F). By adjunction and the isomorphism Lι∗ι∗ ∼= id⊕(id⊗KS)[1] this is

E xt2πP (ι∗F, ι∗F) ∼= E xt2πP (F,F)⊕ E xt1πP (F,F⊗KS) . (41)

We are only interested in the T -fixed part, that is, the first summand above.

Now, ι∗F ∼= q∗F⊗ ι∗OS , where q : X → S is the projection and we have omitted the pullback
maps along P . Therefore

A(ι∗F) = q∗A(F)⊗ 1ι∗OS + 1F ⊗A(ι∗OS ). (42)

The first summand acts trivially on the first summand of (41) (since E xt3πP (F,F⊗ ΩX |S) = 0).
For the second summand, A(ι∗OS) lies in

H1
(
RHom(ι∗OS , ι∗OS)⊗ ΩX

)
= H1

(
ι∗OS ⊗ ΩX

)
⊕ H0

(
ι∗OS(S)⊗ ΩX

)
and is the canonical element of the second summand: the section τ of T ∗

X
⊗OS(S) that projects

tangent vectors to X to the normal bundle of S ⊂ X.

So applying the second summand of (42) to the first of (41) and then taking the trace gives
the upper composition in the commutative diagram

E xt2πP (F,F⊗ ΩX |S(S))
tr
++

E xt2πP (F,F)

τ 33

tr
++

R2πP∗ΩX |S(S) // R3πP∗ΩX .

R2πP∗O
τ

33

The right-hand map is most easily defined by duality: it is Serre dual to the composition

355



M. Kool, R. P. Thomas

R0πP∗Ω
2
X
→ R0πP∗(ΩX |S ⊗ ΩX |S) → R0πP∗(ΩX |S(−S)). Thus the composition R2πP∗O →

R3πP∗ΩX is an isomorphism: the pullback to P of the isomorphism ι∗ : H0,2(S) → H1,3(X).
Therefore the commutativity of this diagram proves the last claim of the proposition.

In particular, PS = Pn(S, β) carries a reduced perfect obstruction theory (E•X,red|PS )fix and
a corresponding reduced virtual cycle

[PS ]red ∈ H2v(PS), v := 2h− 2 + n+

∫
β
c1(S) + h0,2(S) , (43)

of virtual dimension v. Here

v − h0,2(S) = rank(RπP∗RHom(I•S ,F)) = 2h− 2 + n+

∫
β
c1(S) .

Thus we can define the reduced invariants of S to be

P redn,β (S, σ1 . . . σm) :=

∫
[Pn(S,β)]red

(
m∏
i=1

τ(σi)

)
∈ Z . (44)

Secondly, we can use the virtual localisation formula to define the reduced residue invariants of
S to be the contribution of the component PS ⊂ P TX to the stable pair invariants of X (35). This
is

Pred
n,β (S, σ1 . . . σm) :=

∫
[Pn(S,β)]red

1

e(Nvir)

(
m∏
i=1

τ(σi)

)
∈ Z(t) , (45)

where Nvir = (RπP∗RHom(I•S ,F))∨[−1]⊗ t. Thus

1/e(Nvir) = tr +O(tr−1) ,

where r := rank(RπP∗RHom(I•S ,F)) = v − h0,2(S), and

Pred
n,β (S, σ1 . . . σm) =

(
P redn,β (S, σ1 . . . σm)

)
tr +O(tr−1) .

That is, the residue invariants contain as their leading coefficient the reduced stable pair invari-
ants of S; compare Lemma 3.3. Of course it is often the case (for degree reasons, for instance)
that the latter vanishes while the former does not. We will see an example of this in Section 5.

Under certain circumstances, PS is all of P TX , so that Pred
n,β (S) = Pred

n,β (X). The following
proposition, proved in the sequel [KT14], gives examples of this. We will not use this result
in the current paper. Recall [BS91] that a line bundle L on S is said to be k-very ample if
H0(L)→ H0(L|Z) is surjective for every length k+ 1 subscheme Z of S. We say that β is k-very
ample if there exists a line bundle in Picβ(S) which is k-very ample.

Proposition 3.6. [KT14, Proposition 5.1] In the following two cases there is an isomorphism
Pn(X, ι∗β)T ∼= Pn(S, β):

– β is irreducible, or

– K−1S is nef, β is (2δ + 1)-very ample and n 6 1− h+ δ.
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Here h is the arithmetic genus of curves in class β, determined by 2h− 2 = β2 − c1(S) · β. The
inequality on n means the stable pairs have at most δ free points.

The previous proposition is false for arbitrary surfaces. For instance, if KS = OS(C0) is
effective, then consider β = nC0 and let C be the n-fold thickening of C0 along the fibres of KS .
This is T -fixed with χ = 1 − h, but not scheme-theoretically supported on S. However one can
often make it true again by restricting to small linear subsystems in the space of curves. We will
do this in Section 5.

4. Insertions and linear systems

4.1 Det and div

Let Hilbβ(S) denote the Hilbert scheme of curves in S in class β. These are subschemes Z ⊂ S
of Hilbert polynomial χ(OZ(n)) = 1

2

∫
β c1(S)− β2/2 + n

∫
β c1(O(1)) for every ample line bundle

O(1) on S. In contrast to the threefold case, these are all pure curves, that is, subschemes of pure
dimension one, with no free or embedded points. Such a curve C is a divisor with an associated
line bundle O(C), defining an Abel–Jacobi map AJ : Hilbβ(S)→ Picβ(S). Both of these spaces
receive maps from both of our moduli spaces of curves in S:

Mg,n(S, β)
div

&&

det

��

Pn(S, β)
H

xx

det

��

Hilbβ(S)

AJ

��
Picβ(S) .

(46)

The map div takes a stable map to its divisor class, which is its image with multiplicities. That
is, if the irreducible components Ci of its image are multiply covered ki times then the image is
the divisor

∑
i kiCi defined by the ideal sheaf

⊗
i I

ki
Ci

. This set theoretic map can be made into
a morphism by taking a stable map f : C → S to the line bundle det(f∗OC) ∈ Picβ(S) and its
canonical section [KM76].

The map H takes a pair (F, s) to the scheme theoretic support of F . In fact, it is proved in
[PT10, Proposition B.8] that Pn(S, β) is a relative Hilbert scheme of points on the fibres of the
universal curve over Hilbβ(S).

The fibre of AJ over the line bundle L is the full linear system P(H0(L)). If we wish to
derive invariants from just one such linear system, we can do so using insertions as in [BL99].
We reprove their results in a slightly simpler way.

Picking a base point in Pic := Picβ(S) gives a canonical isomorphism

Pic ∼= H1(S,R)/H1(S,Z) .

Therefore H1(Pic,R) is canonically isomorphic to the space H1(S,R)∗ of constant one-forms
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on Pic. Via the isomorphism H1(S,R) ∼= H1(S,R)∗, a cycle γ ∈ H1(S) gets taken to the constant
one-form γ̃ whose pairing with a constant tangent vector v ∈ H1(S,R) to Pic is

〈γ̃, v〉Pic =

∫
γ
v ,

where the right-hand integral takes place on S.

Pick a Poincaré line bundle P on S × Pic, and let πS , πPic denote the obvious projections.

Lemma 4.1. We have γ̃ = πPic ∗
(
π∗S([γ]) ∪ c1(P)

)
, where [γ] := PD(γ) ∈ H3(S) is the Poincaré

dual of γ.

Proof. Consider the Künneth component of c1(P) ∈ H2(S × Pic) in

H1(S)⊗H1(Pic) ∼= Hom(H1(S), H1(Pic)) . (47)

Identifying the right-hand side of (47) with

Hom(H1(S), H1(S)) ,

its class is the identity. Thus, considered as an element of Hom(H1(S), H1(Pic)), it takes γ ∈
H1(S) to γ̃ ∈ H1(Pic), since this is what maps back to γ under H1(Pic) ∼= H1(S).

However, via the isomorphism (47), c1(P) takes γ to

πPic ∗(c1(P)|γ×Pic) = πPic ∗(c1(P) ∪ PD(γ × Pic)) ,

which is πPic ∗(c1(P) ∪ π∗S [γ]), as required.

The following is a result of Bryan and Leung [BL99, Theorem 2.1].

Proposition 4.2. The cohomology class π∗f
∗ [γ] is det∗ γ̃.

Proof. We work with the diagram

C
f

##

π

zz
π×f
��

M

det
��

S ×M

det
��

p
M

oo
pS

// S

Pic S × Pic ,

πS

;;

πPicoo

(48)

where C is the universal curve. On S×M , the divisor class div C defines a line bundleOS×M (div C)
which, on restriction to any S-fibre, is isomorphic to the restriction of the pullback det∗ P of the
Poincaré line bundle. The two therefore differ only by a line bundle pulled back from M (that
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is, with no S-component). Thus for degree reasons we have

det∗γ̃ = det∗πPic ∗
(
π∗S [γ] ∪ c1(P)

)
= p

M∗det∗
(
π∗S [γ] ∪ c1(P)

)
= p

M∗
(
p∗S [γ] ∪ [div C]

)
= p

M∗
(
(p∗S [γ])|div C

)
= π∗(π × f)∗(p∗S [γ])

= π∗f
∗[γ] ,

where in the penultimate line we have used the fact that the fundamental class of div C is the
same as that of C pushed forward by π × f .

Following Bryan and Leung [BL99], let γi, i = 1, . . . , b1 = b1(S) be an integral basis of
H1(S,Z)/torsion, oriented so that ∫

Pic
γ̃1 ∧ . . . ∧ γ̃b1 = 1 . (49)

Thus γ̃1 ∧ . . . ∧ γ̃b1 = [pt] is Poincaré dual to a point of Pic, so by Proposition 4.2 and b1
applications of (32),

det∗([pt]) = r∗(ev∗1[γ1] ∧ . . . ∧ ev∗b1 [γb1 ]) ,

where r : Mg,n+b1 →Mg,n is the map that forgets the last b1 points and stabilises.

Since r intertwines ev1, . . . , evn on Mg,n+b1(S, β) and Mg,n(S, β), when we apply this to the
reduced Gromov–Witten invariants (30) we get

Rg,β(S, σ1 . . . σn[γ1] . . . [γb1 ])

=

∫
[Mg,n(S,β)]red

(
ev∗1 σ1 ∧ . . . ∧ ev∗n σn

)
∧ det∗([pt])

=

∫
j![Mg,n(S,β)]red

ev∗1 σ1 ∧ . . . ∧ ev∗n σn . (50)

Here j! is the refined Gysin map [Ful98, Section 6.2] for the inclusion of a point j : {L} ↪→ Picβ(S).

It would be nice to write j![Mg,n(S, β)]red in the form [Mg,n(S, |L|)]red. That is, we would like
to see it as a reduced virtual cycle on the moduli space of stable maps whose associated divisor
lies in the linear system |L|, defined by the Cartesian diagram

Mg,n(S, |L|) � � j //

��

Mg,n(S, β)

det
��

{L} � � j // Picβ(S) .

(51)
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Now we have the diagram

N∗{L}⊂Pic
//

��

j∗E•red

��
LM|L|/Mβ

[−1] // j∗LMβ

// LM|L| ,

(52)

with N∗{L}⊂Pic
∼= ΩPic|{L} ∼= H1(KS) the conormal bundle to the point L in Pic. If we can fill in

the dotted arrow, its cone is easily seen to give the required reduced perfect obstruction theory
for M|L| = Mg,n(S, |L|).

The arrow is produced by simply repeating Section 2.2 for H1(KS) in place of H0(KS), giving

H1(KS)⊗OM|L| −→ j∗E•red ,

analogously to the map H0(KS)⊗OMβ
−→ E•[−1] of (15). However checking that the resulting

diagram (52) commutes appears technically difficult. We hope to return to this issue in the future.

4.2 Point insertions and linear subsystems

Having cut down to stable maps with image in a single linear system using insertions (50), we
next show how point insertions correspond (at the level of virtual cycles) to cutting down to
linear subsystems.

We work with the commutative diagram

C
a
��

f

��
π

��

div∗ C′
div
//

p2
��

f2

((C′

p1

��

f1
// S

M|L| div
// |L| ,

(53)

where C′ → |L| is the universal curve over the linear system |L| and π : C → M|L| is the univer-

sal curve over the space of stable maps. Over M|L| the latter maps to the former, contracting
some components and replacing multiple covers by scheme-theoretic multiplicities, carrying the
fundamental class of one to the other. In particular, p∗2 = a∗π

∗ on homology.

Concentrating on the bottom right-hand corner, we show first that

p1∗f
∗
1 ([pt]) = h , (54)

where [pt] ∈ H4(S) is the Poincaré dual of a point of S, and h ∈ H2(|L|) is the hyperplane class.
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This follows from the computation∫
|L|
p1∗f

∗
1 ([pt])hdim |L|−1 =

∫
P1

p1∗f
∗
1 ([pt]) =

∫
C′
P1

f∗1 ([pt])

= deg
(
f1|C′

P1
: C′P1 → S

)
= 1 .

Here P1 ⊂ |L| is any pencil, with universal curve C′P1 over it. Since any pencil of curves sweeps
out S, the map C′P1 → S is birational and thus has degree 1, as claimed.

From (53) and (54) it follows that

p2∗f
∗
2 ([pt]) = p2∗div∗f∗1 ([pt]) = div∗p1∗f

∗
1 ([pt]) = div∗(h) .

Now p∗2 = a∗π
∗ on homology implies that p2∗ = π∗a

∗ on cohomology. Therefore

div∗(h) = π∗a
∗f∗2 ([pt]) = π∗f

∗([pt]) . (55)

Thus we get the point insertion π∗f
∗([pt]). Repeating m times gives the m-point insertions as in

(32). In particular we get from (50) that

Rg,β(S, σ1 . . . σn[γ1] . . . [γb1 ][pt]m) =

∫
i!j![Mg,n(S,β)]red

ev∗1 σ1 ∧ . . . ∧ ev∗n σn . (56)

As before j! is the generalised Gysin map for the inclusion j : {L} ↪→ Picβ, and we let i be the
inclusion of a codimension m linear subsystem of |L|, where m is the number of point insertions.
So the above is an integral over the space of stable maps mapping to this linear subsystem.

4.3 Extension to pairs and the threefold X

We have concentrated on the moduli space of stable maps Mg,n(S, β), but the above results
about insertions apply equally to Pn(S, β). The proofs are the same (slightly easier even, since
the universal curve, which in the stable pairs case is ch2(F), embeds into S × P in the diagram
analogous to (48), and the map a is an isomorphism in (53)). The upshot is the following analogue
of (56):

P redn,β (S, σ1, . . . σm[γ1] . . . [γb1 ][pt]k) =

∫
i!j![Pn(S,β)]red

m∏
i=1

τ(σi) , (57)

with i and j as before. The reduced obstruction theory of Appendix 5.2 is easily done relative to
Picβ(S) so the analogue of the commutative diagram (52) is automatic. Therefore (though we
will not need or use it) the right-hand side of (57) can equally be written as an integral over a
reduced virtual cycle for Pn(S,P) := Pn(S, |L|)×|L| P, where i : P ↪→ |L| is the linear subsystem.

With the obvious modifications the results also apply to X = KS , and to the corresponding
residue invariants. By pushing down curves in X to S before applying div (46) we get maps
from Pn(X, ι∗β) and Mg,n(X, ι∗β) to Hilbβ(S) and Picβ(S). Proposition 4.2 then holds with [γ]
replaced by its pullback to X, and the same therefore applies to formula (50).
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Similarly, formula (55) also holds on X when [pt] is replaced by its pullback to X, that is, by
the Poincaré dual of a fibre of KS . The same then applies to formula (56).

5. Counting nodal curves

5.1 Severi degrees as reduced Gromov–Witten invariants

In this section we show that the Severi degrees (as studied by Göttche [Got98], for instance)
counting nodal curves in very ample linear systems can be seen as a special case of the reduced
Gromov–Witten invariants (30). In particular we give these classical invariants a more modern
treatment using virtual cycles, allowing us to extend them to virtual counts outside of the very
ample regime.

Fix a line bundle L with H1(L) = 0 (which almost certainly follows from the ampleness
assumptions below) and c1(L) = β satisfying condition (3); in particular then H2(L) = 0 also.
Given a curve C, we let g(C) denote its arithmetic genus, defined by 1 − g(C) := χ(OC) even
when it is not reduced or connected. When C is reduced its geometric genus g(C) is defined to be
g(C), the genus of its normalisation. Finally, let h denote the arithmetic genus of curves in |L|,
so that 2h− 2 = β2 − c1(S) · β.

Proposition 5.1. If L is a (2δ+ 1)-very ample line bundle on S then the general δ-dimensional
linear system Pδ ⊂ |L| contains a finite number of irreducible δ-nodal curves appearing with
multiplicity one, and all other curves are reduced and irreducible with geometric genus g > h−δ.

Proof. This result without the irreducibility requirement is proved in [KST11, Proposition 2.1]
under the weaker assumption of δ-very ampleness.

So to finish we assume for a contradiction that there exists a reducible curve in Pδ ⊂ |L|.
Since it must be reduced, we can write it as A+B, with A and B nonzero and having no common
irreducible components.

By the Hodge index theorem, A2 6 (L · A)2/L2 for any positive L ∈ H1,1(S) and arbitrary
A ∈ H1,1(S). (Proof: A − (L · A)L/L2 is orthogonal to L so has square 6 0.) Applied to our
situation we get

A ·B = A · (L−A) > A · L− (A · L)2

L2
=

(A · L)(B · L)

L2
. (58)

By symmetry we may assume that A · L 6 B · L. Then

L2 = A · L+B · L 6 2B · L

so that by (58),

A ·B >
A · L

2
>

2δ + 1

2
. (59)

The inequality A ·L > 2δ+ 1 follows from the (2δ+ 1)-very ampleness of L as follows. It suffices
to show the inequality for any irreducible effective divisor A. Choose 2δ+ 2 smooth points on A.
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By the definition of (2δ + 1)-very ampleness, there is a divisor in |L| which passes through the
first 2δ+1 points, but not the last one. Therefore the divisor does not contain A, and L·A > 2δ+1,
as required.

But (59) implies the normalisation of A + B pulls apart more than δ intersection points,
which makes the geometric genus of A+B less than h− δ, a contradiction.

We call these irreducible δ-nodal curves

Di , i = 1, . . . , nδ(L) . (60)

Here nδ(L) is the intersection of Pδ with the Severi variety

{C ∈ |L| : C has δ nodes} ⊂ |L| ,

that is, it is the Severi degree (4) studied by Göttsche [Got98].

Since they are irreducible, the normalisation mapsDi → Di define stable maps fi :Di → S
from smooth connected curves. In fact, these are all of the points of Mh−δ(S,Pδ) := div−1(Pδ).

Proposition 5.2. Let L be a (2δ+1)-very ample line bundle on S. The only points of Mh−δ(S, β)
whose divisor class lies in Pδ are the normalisations of the δ-nodal curves Di. These are smooth
points of Mh−δ(S, β) and smooth isolated points of Mh−δ(S,Pδ).

Proof. Choose a stable map f : C → S whose divisor class lies in Pδ. So C is connected and at
worst nodal. By Proposition 5.1 its image Σ := f∗C is reduced and irreducible of geometric genus
at least h− δ, and f is generically one-to-one except on contracted irreducible components.

Let C1, . . . Ck denote the irreducible components of C which are contracted, and let Ck+1

denote the one which surjects onto Σ. Therefore Σ = Ck+1 and C = C1 t . . . t Ck+1.

We want to show that g(C) > h − δ with equality only if (C, f) is the normalisation of one
of the δ-nodal curves Di. We have

g(C)− 1 =
k+1∑
i=1

(g(Ci)− 1) + d ,

where d = g(C)− g(C) is the number of nodes of C, and

g(Σ)− 1 = g(Ck+1)− 1 .

Thus

g(C)− g(Σ) =

k∑
i=1

(g(Ci)− 1) + d . (61)

Contracted components of genus g(Ci) > 2 contribute strictly positively to (61). Contracted
components of genus one must contain one of the nodes of C by stability (or connectedness),
forcing d > 0 and therefore also contributing strictly positively to (61). Finally, contracted
projective lines P1 must contain at least three of the nodes in C, by stability. So if there are
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p > 0 contracted projective lines P1 then there must be at least 3p preimages of nodes upstairs
on C and so at least 3p/2 nodes downstairs on C. In particular, d > 3p/2 > p, so again (61) is
strictly positive.

It follows that

g(C) > g(Σ) > h− δ ,
with equality implying that there are no contracted components, no nodes (d = 0), and, by
Proposition 5.1, Σ must be one of the δ-nodal curves Di. Thus C is smooth and f is the normal-
isation of the image Di.

Finally, we deal with the deformation theory of a nodal curve D ⊂ S. The “multiplicity one”
statement of Proposition 5.1 refers to the scheme structure on the locus of nodal curves defined
by locally pulling back the reduced scheme structure from the miniversal deformation space of
the singularity [KST11, proof of Proposition 2.1]. What is in fact proved is that the locus of
δ-nodal curves is smooth of codimension δ, and then Pδ is chosen transverse to it. Equivalently,
the composition

TDPδ → H0(OD(D))→ H0(OZ(D)) (62)

is surjective. Here Z ⊂ D is the singular set of D – the union of its nodes – and H0(OZ(D)) is
its miniversal deformation space.

We want to relate this to the deformation theory of the resulting stable map f :D → S given
by normalising D. Since f is an immersion, TD → f∗TS is an injection; we define Nf to be its
cokernel. By local calculation,

f∗Nf
∼= IZ(D) ⊂ OD(D) ,

where Z ⊂ D is the union of the nodes of D. The usual stable map deformation-obstruction
theory (12) reduces in this case to

(E•)∨ = RΓ
(
TD → f∗TS

)
= RΓ(D,Nf ) = RΓ(D, f∗Nf ) = RΓ(D,IZ(D)) .

In particular, the vector space of first order deformations is H0(IZ(D)), and those with divisor
class in Pδ are given by the intersection in H0(OD(D)) of TDPδ and H0(IZ(D)). That is,
the Zariski tangent space to Mh−δ(S,Pδ) at (D, f) is the kernel of the composition (62). But
that map is surjective between vector spaces of dimension δ, so has kernel 0. Therefore the
(Di, fi) ∈Mh−δ(S,Pδ) are isolated points as claimed.

From this also follows the fact that Mh−δ(S, β) is smooth at (Di, fi). In fact, let d denote the
dimension of its Zariski tangent space at (Di, fi), and let v be its virtual dimension (17) in the
reduced obstruction theory. As for any space with perfect obstruction theory, we have

d > v ,

with equality only if Mh−δ(S, β) is smooth at (Di, fi). Cutting down by h0,1(S) equations to
Mh−δ(S, |L|) and then by a further χ(L) − 1 − δ equations to Mh−δ(S,Pδ), the Zariski tangent
space has complex dimension at least

v − h0,1(S)− χ(L) + 1 + δ = 0 .
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But the (Di, fi) are isolated in Mh−δ(S,Pδ), so the above inequalities are both equalities, and
the (Di, fi) indeed define smooth points of Mh−δ(S, β).

(Alternatively one can compute by the deformation theory above that the reduced obstruction
space vanishes.)

Combining this with (56) we find that the reduced Gromov–Witten invariants with insertions

(. . .) :=
(
S, [γ1] . . . [γb1(S)][pt]

χ(L)−1−δ) (63)

equal

Rh−δ,β(. . .) = nδ(L) .

Göttsche conjectured that the numbers nδ(L) should be degree δ polynomials in the four numbers
L2,KS ·L,K2

S , c2(S) when L is at least (5δ − 1)-very ample. This was proved by Tzeng [Tze12],
and later in [KST11] for L at least δ-very ample using the stable pair methods of the next section.

By Lemma 3.3 the reduced residue Gromov–Witten invariants ofX contain the same numbers.
(When working on X we use the insertions

(. . .) :=
(
X, q∗[γ1] . . . q

∗[γb1(S)]q
∗[pt]χ(L)−1−δ

)
(64)

pulled back from (63) by the projection q : X → S.) In fact, for degree reasons the other terms
in Lemma 3.3 all vanish. Summarising then, we have the following result.

Theorem 5.3. Let L be a (2δ + 1)-very ample line bundle with H1(L) = 0 and c1(L) = β
satisfying condition (3). Then the reduced Gromov–Witten invariants of both (S, β) and (X =
KS , ι∗β) include the Severi degrees nδ(L) of δ-dimensional linear systems in |L|:

Rh−δ,β(. . .) = nδ(L) ,

Rh−δ,β(. . .) = nδ(L) · th−δ−1+
∫
β c1(S) .

Here (. . .) denotes either of the insertions (63) on S or (64) on X, and nδ(L) (60) is a universal
degree δ polynomial in β2,

∫
β c1(S), c1(S)2 and c2(S).

Therefore Rh−δ,β(S, [γ1] . . . [γb1(S)][pt]
χ(L)−1−δ) gives us one way of extending Severi degrees

to the case when L is not very ample, and has possibly nonvanishing H1. It is a virtual count of
irreducible δ-nodal curves satisfying the incidence conditions.

5.2 Severi degrees as reduced stable pair invariants

One can encode the reduced residue Gromov–Witten invariants Rg,β in BPS form. By Proposi-
tion 5.1 all curves in Pδ are reduced and irreducible. In particular, the stable maps in Mg(S,Pδ)
all have irreducible image and involve no multiple covers. So the universal formula for the BPS
invariants rg,β ∈ Q(t) reduces to

∞∑
g=0

Rg,β(. . .)u2g−2 =

∞∑
g=0

rg,β(. . .)(2 sinu/2)2g−2 , (65)
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where we use the same insertions (. . .) as above (63, 64). Via the Gopakumar–Vafa, MNOP and
stable pairs conjectures [GV98, MNOP06, PT09], all extended to the reduced and equivariant
cases, the rg,β defined by (65) should lie in Z(t) and can also be calculated via universal formulae
in the reduced residue stable pair invariants.

The leading u2h−2δ−2-term in (65) states that in genus h − δ, the reduced BPS invariants
are just the reduced residue Gromov–Witten invariants, which by Lemma 3.3 are the reduced
Gromov–Witten invariants up to a shift in the equivariant parameter:

rh−δ,β(. . .) = Rh−δ,β(. . .) = Rh−δ,β(. . .) · th−δ−1+
∫
β c1(S)

= nδ(L) · th−δ−1+
∫
β c1(S) . (66)

The MNOP and Gopakumar–Vafa conjectures state that this should equal a linear combina-
tion of stable pair invariants by the universal formulae of [PT09, PT10]. Again things simplify
in our case to

∞∑
i=0

ri,β(. . .)q1−i(1 + q)2i−2 =

∞∑
i=1−h

Pred
i,β (. . .)qi . (67)

These equations can be inverted to define the ri,β as linear combinations of the Pred
i,β :

ri,β(. . .) =


0 i > h ,
Pred

1−h,β(. . .) i = h ,

Pred
1−i,β(. . .)−

∑h
k=i+1

(
2k − 2
k − i

)
rk,β(. . .) i < h .

(68)

So one way of stating the conjecture is that the ri,β defined by (68) agree with the ri,β defined
by (65).

In this section we will prove this conjecture for the BPS number rh−δ,β, thus showing that
the Severi degrees are also given by a linear combination of reduced stable pair invariants. This
was the motivation behind the paper [KST11].

We recall from [PT10, Proposition B.8] that Pi(S, β) is the relative Hilbert scheme of i−1+h
points on the fibres of the universal curve over Hilbβ(S). (We describe this isomorphism in (90)
in Appendix 5.2.) Similarly,

Pi(S,Pj) = Hilbi−1+h(C/Pj)
for any linear system Pj ⊂ |L|. And these spaces are smooth for general Pj [KST11, Section 4].

Theorem 5.4. Let L be a (2δ + 1)-very ample line bundle with H1(L) = 0 and c1(L) = β
satisfying condition (2) (respectively condition (3)).

The reduced stable pair invariants Pred
n,β (S) (respectively Pred

n, ι∗β
(X)) contain the Severi de-

grees nδ(L) of δ-dimensional linear systems in |L|. That is, if we define ri,β(. . .) ∈ Z(t) by

∞∑
i=0

ri,β (. . .)q1−i(1 + q)2i−2 =
∞∑

i=1−h
Pred
i,β (. . .)qi , (69)
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with (. . .) either of the insertions (63, 64), then

rh−δ,β(. . .) = nδ(L) · th−δ−1+
∫
β c1(S) ,

given by a universal degree-δ polynomial in β2,
∫
β c1(S), c1(S)2 and c2(S).

Remark 5.5. We use Appendix 5.2 to deal with curve classes satisfying only condition (2). If
we work only with classes satisfying (3) then the reduced Gromov–Witten invariants are also
defined and Theorem 5.3 then shows that Rh−δ,β(. . .) is equal to the same linear combination of
reduced stable pair invariants. Thus the reduced MNOP conjecture is true in this special case.

Remark 5.6. We can use (69) to define virtual Severi degrees nδ(L) outside of the very ample
case. In the sequel [KT14] we show that these virtual numbers are governed by the Göttsche
polynomials [Got98] just as in the very ample case [Tze12, KST11]. In fact we prove that reduced
stable pair invariants of surfaces can be calculated in terms of topological numbers much more
generally.

Proof. The choice of insertions together with Proposition 5.1 ensure the relevant stable pair
moduli spaces for X and S are the same. We work in this proof with S.

Let c = χ(L) − 1 − δ denote the codimension of Pδ ⊂ |L|, and let i run between 1 − h
and 1− h+ δ.

Since Pi(S,Pδ) ⊂ Pi := Pi(S, β) is smooth of the right reduced virtual dimension (43) v −
h0,1(S) − c = i − (1 − h) + δ, the reduced obstruction space of Proposition 3.4 (restricted to
Pi(S,Pδ)) vanishes. Thus the ordinary obstruction sheaf (restricted to Pi(S,Pδ)) is the constant
bundle with fibre H2(OS), and the fixed obstruction theory (36) of Pi (restricted to Pi(S,Pδ))
has

h0((E•X |PS )fix) = ΩPi , h−1((E•X |PS )fix) = H0(KS) .

Therefore by (37) the virtual normal bundle (restricted to Pi(S,Pδ)) similarly has

h1(Nvir) = ΩPi ⊗ t , h0(Nvir) = H0(KS)⊗ t ,

where t is the one-dimensional representation of T of weight one.

Substituting into the virtual localisation formula (45) and using the insertion formula (57)
(and smoothness), we find

Pred
i,β

(
S, [γ1] . . . [γb1(S)][pt]

c
)

=

∫
Pi(S,Pδ)

ctop(ΩPi ⊗ t)

ctop(H0(KS)⊗ t)

=

(∫
Pi(S,Pδ)

cdimPi(S,Pδ)(ΩPi)

)
tα . (70)

Here α = (rank ΩPi − dimPi(S,Pδ)) − h2,0(S), the first term coming from the numerator, the
second from the denominator. This is

α = c+ h0,1(S)− h2,0(S) = χ(L)− χ(OS)− δ = h− 1 +

∫
β
c1(S)− δ ,
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as required. So we concentrate on the bracketed integral in (70). Consider the exact sequence
0→ N∗ → ΩPi → ΩPi(S,Pδ) → 0 on Pi(S,Pδ), where N∗ is the conormal bundle of Pδ ⊂ Hilbβ(S),
which in turn sits inside an exact sequence 0→ ΩPicβ(S)|{L} → N∗ → O(−H)⊕c → 0. We obtain∫

Pi(S,Pδ)
c•(ΩPi(S,Pδ))

(
1− cH +

c(c− 1)

2
H2 − . . .

)

= (−1)i+h−1+δe(Pi(S,Pδ)) +
δ∑
j=1

(−1)j
(
c
j

)∫
Pi(S,Pδ−j)

c•(ΩPi(S,Pδ)) .

Here the Pδ−js are generic linear subspaces of Pδ ⊂ |L| chosen to contain only curves of geometric
genus at least h− δ + j (see Proposition 5.1) and so that the Pi(S,Pδ−j) are still smooth.

Similarly, using the exact sequence 0 → O(−H)⊕j → ΩPi(S,Pδ) → ΩPi(S,Pδ−j) → 0 on

Pi(S,Pδ−j), we find inductively that the whole expression can be written in terms of topological
Euler characteristics

(−1)i+h−1+δ

e(Pi(S,Pδ)) +
δ∑
j=1

aje(Pi(S,Pδ−j))

 ,

for some integral coefficients aj .

Therefore the ri,β ∈ Z(t) are defined by setting
∑∞

i=0 ri,βq
1−i(1+q)2i−2 equal to th−1+

∫
β c1(S)−δ

times

1−h+δ∑
i=1−h

(−1)i+h−1+δ

e(Pi(S,Pδ)) +

δ∑
j=1

aje(Pi(S,Pδ−j))

qi +O(q2−h+δ) . (71)

Evaluating these Euler characteristics fibrewise, we express them as Euler characteristics of
the base Pδ−js, weighted by the constructible function whose value at a point is the Euler
characteristic of the fibre above it. Then by inverting the above formula as in (68), we also get
each ri,β as a sum of weighted Euler characteristics of the Pδ−js.

By [PT10, Theorem 5], the weighting function for ri,β at a point C ∈ Pδ−j is zero unless i lies
between the arithmetic and geometric genera of the reduced irreducible curve C. In particular,
for i = h − δ, the function is identically zero on Pδ−j for j > 0, and nonzero on Pδ only at the
δ-nodal curves Di. And by [PT10, Proposition 3.23], it takes the value 1 on the Di.

So in (71) only the first terms contribute to rh−δ,β; the second terms all cancel to give zero.
And the first Euler characteristic contributes the number of δ-nodal curves Di, yielding

rh−δ,β(. . .) = nδ(L) · th−1+
∫
β c1(S)−δ

as claimed.
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Appendix A. Reduced obstruction theory for stable pairs revisited
written with Dmitri Panov

A.1 The Hilbert scheme of curves as a zero locus6

Let Hβ := Hilbβ(S) denote the Hilbert scheme of curves in class β. We describe an embedding
of Hβ in a smooth space with a bundle over it and a canonical section whose zero locus is
precisely Hβ. For now we make an assumption slightly stronger than condition (2):

H2(L) = 0 for all line bundles with c1(L) = β. (72)

Fix a curve A ⊂ S which is sufficiently ample in the sense that

H>1(L(A)) = 0 for all line bundles with c1(L) = β. (73)

Notice that the constructions of this section can also be done in projective families of surfaces by
picking a divisor A on the whole family which has the required ampleness on each fibre. Letting
γ = [A] + β, we get an embedding Hβ ↪→ Hγ defined on points by

Hilbβ(S) ↪→ Hilbγ(S), (74)

C 7→ A+ C.

At the level of schemes, the map is defined using the usual universal diagram

C �
� i //

πH %%

S ×Hilbβ(S)
πS //

πH
��

S

Hilbβ(S) .

(75)

The divisor C+π∗SA ⊂ S×Hβ is a flat family of divisors in S of class γ, so has a classifying map
from the base Hilbβ(S) to Hilbγ(S).

Notice that by (73), Hγ is smooth; it is a projective bundle over Picγ(S). Let D ⊂ S×Hγ be
the universal divisor, and again use πH to denote the projection to Hγ . Consider πH∗ applied to
the exact sequence

0 −→ O(D − π∗SA) −→ O(D) −→ O(D)|π∗SA −→ 0 .

6We now realise this construction was discovered many years ago by Dürr, Kabanov and Okonek [DKO07]. In the
next Section A.2 we extend it to stable pairs.
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By our assumption (72), R2πH∗ of the first term vanishes, and R>1πH∗ of the central term
vanishes by (73). Therefore R>1πH∗ of the final term vanishes, and

F := πH∗
(
O(D)|π∗SA

)
(76)

is a vector bundle on Hγ .

Proposition A.1. Define the canonical section σ of F → Hilbγ(S) by pushing down the restric-
tion sD|π∗SA of the canonical section of O(D). Then the zero locus of σ is the subscheme

A+ Hilbβ(S) ⊂ Hilbγ(S ).

Proof. By its very definition, σ(D) = 0 for D ∈ Hilbγ(S) if and only if sD|A = 0, if and only if
A ⊂ D. This gives the result at the level of sets. In fact, scheme-theoretically, it is also clear that σ
vanishes on A+Hilbβ(S). So it is sufficient to produce the inverse morphism Z(σ)→ A+Hilbβ(S).

Since sD vanishes on the pullback of A to S × Z(σ), we can divide by the pullback of its
defining equation sA to give a divisor in S ×Z(σ) whose classifying map Z(σ)→ Hilbβ(S) gives
the required inverse.

Letting I denote the ideal of Hβ ⊂ Hγ , we get the diagram on Z(σ) = Hβ:

F ∗|Hβ
dσ //

σ
��

ΩHγ |Hβ

I/I2
d // ΩHγ |Hβ .

(77)

We denote the upper row by the complex {F−1 → F 0} =: F •red of vector bundles on Hβ. The
bottom row is the truncated cotangent complex of Hβ, so we have

F •red → LHilbβ(S).

This is an isomorphism on h0 = ΩHβ and a surjection on h−1 because F ∗|Hβ → I/I2 is onto.

We will see that F •red is the reduced obstruction theory. As a warm-up we explain what
happens at a point C ∈ Hilbβ(S). The obvious long exact sequence

0→ H0(OC(C))→H0(OA+C(A+ C))→ H0(OA(A+ C))→
H1(OC(C))→ H1(OA+C(A+ C))→ H1(OA(A+ C))

is precisely

0→ TCHβ → TC+AHγ → F |{C+A} → H1(OC(C))→ H2(OS)→ 0 , (78)

using the assumptions (72, 73) and identifying the penultimate term via the exact sequence

0→ OS → O(A+ C)→ OA+C(A+ C)→ 0 .

In other words, we identify H1(OA+C(A + C))
∼−→ H2(OS) by the semi-regularity map for

A + C. But the resulting map H1(OC(C)) → H2(OS) in (78) is the semi-regularity map for C
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itself, as can be seen from the comparison maps between the sequence 0→ OS → O(A+ C)→
OA+C(A+ C)→ 0 and the sequence of subsheaves 0→ OS → O(C)→ OC(C)→ 0.

The first few maps in (78) are, respectively, the derivative at C of the inclusion Hβ ↪→ Hγ ,
and the derivative at C + A of the section s ∈ Γ(F ). This latter map is exactly the complex
(F •red)

∨|C (that is, the dual of the top line of (77)), with cokernel

h1((F •red)
∨) = ker

(
H1(OC(C))→ H2(OS)

)
.

Thus the obstruction space of F •red at C is the reduced obstruction space: the kernel of the
semi-regularity map of (1) from the usual obstruction space H1(OC(C)) to H2(OS).

We now prove all this for the universal curve C over the family Hilbβ(S). The ordinary
obstruction theory F • → LHβ , where (F •)∨ := RπH∗OC(C), admits the semi-regularity map

(F •)∨ = RπH∗OC(C) −→ R2πH∗OS×Hβ [−1] (79)

induced by the exact sequence 0→ O → O(C)→ OC(C)→ 0.

Proposition A.2. The semi-regularity map fits into an exact triangle intertwining the two
perfect obstruction theory maps:

(F •red)
∨ // (F •)∨ // H2(OS)⊗OHβ [−1]

L∨Hβ .

OOee

Proof. First we recall the obstruction theory of Hβ. Using the diagram (75) we get maps

OC(−C) = L C/(S×Hβ)[−1] −→ Li∗LS×Hβ = π∗SLS ⊕ π∗HLHβ −→ π∗HLHβ . (80)

Their composition gives, by adjunction, the perfect obstruction theory7

L∨Hβ −→ RπH∗OC(C) . (81)

Similar working using OD(−D) on S ×Hγ gives (recalling that Hγ is smooth),

THγ = L∨Hγ −→ RπH∗OD(D) . (82)

On restriction to Hβ
� � +A //Hγ , the divisor D pulls back to π∗SA + C, so we have the exact

sequence

0 −→ OC(C) −→ OD(D) −→ Oπ∗SA(D) −→ 0

7This construction, viewing curves as divisors in S, coincides with the obstruction theory obtained by thinking of
Hilbβ(S) as parameterising pairs (OC , 1) of a sheaf and a section. The essential point is that the Atiyah class of
OC in Ext1(OC ,OC ⊗ LS×Hβ ) is the canonical morphism in the summand Hom(OC(−C), Li∗LS×Hβ ).

371



M. Kool, R. P. Thomas

over Hβ. Pushing down to Hβ and combining with the maps (81, 82) gives the commutative
diagram

L∨Hβ
//

��

THγ |Hβ

��
RπH∗OC(C) // RπH∗OD(D) // F ,

(83)

where the bottom row is an exact triangle and the composition THγ |Hβ → F is dσ. Thus we get
the diagram

THγ |Hβ
dσ //

��

F

RπH∗OD(D) //

��

F

R1πH∗OD(D)[−1] ,

(84)

whose columns are exact triangles since THγ
∼−→ πH∗OD(D). The cone on the first row is (F •red)

∨

(77), the second is (F •)∨ by (83), and the third is H2(OS) ⊗ OHβ [−1] by the exact sequence
0→ OS×Hβ → OS×Hβ (D)→ OD(D)→ 0. We get the exact triangle

(F •red)
∨

��
(F •)∨

��

L∨Hβ
oo

gg

R2πH∗OS×Hβ [−1] ,

(85)

where we have added in the map (81). Though the bottom arrow was constructed from the
semi-regularity map for D, it is the semi-regularity map (F •)∨ → H2(OS) ⊗ OHβ [−1] for C by
the commutativity of the diagram of exact triangles

RπH∗OS×Hβ (C) sA //

��

RπH∗OS×Hβ (D)

��
RπH∗OC(C)

sA //

��

RπH∗OD(D)|S×Hβ

��
RπH∗OS×Hβ [1] RπH∗OS×Hβ [1]

and the functoriality of truncation.

Finally then, we need the dotted arrow in (85). Considering the map L∨Hβ → (F •)∨ of (81)

as a morphism to the cone on the second row of the diagram (84), the diagram (83) shows that
it factors through the complex {THγ |Hβ → F}, which is (F •red)

∨, as required.
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A.2 The relative Hilbert scheme of points as a zero locus

Recall that the moduli space of stable pairs is a relative Hilbert scheme of points over Hβ:

P1−h+n(S, β) ∼= Hilbn(C/Hβ) .

Just as we described the base Hβ as the zero locus of a section of a bundle, we can do the same
for the fibres. We use the embedding

Hilbn(C/Hβ) ⊂ S[n] ×Hβ , (86)

where S[n] := Hilbn(S) is smooth because S is a surface. There is a universal subscheme

Z ⊂ S × S[n] ×Hβ
π−→ S[n] ×Hβ

pulled back from S × S[n], and of course a universal curve C pulled back from S ×Hβ inducing
a universal line bundle and section (O(C), sC). This induces a canonical section σC of the rank n
vector bundle

O(C)[n] := π∗
(
O(C)|Z

)
. (87)

Its zeros are the pairs (Z,C) with Z ⊂ C ⊂ S; in fact by the argument of Proposition A.1 it is
scheme-theoretically Hilbn(C/Hβ) embedded as in (86).

Thus we get a perfect relative obstruction theory in the usual way:

E• :=
{

(O(C)[n])∗ dσC //

σC
��

ΩS[n]

}

LHilbn(C/Hβ)/Hβ =
{
I/I2

d // ΩS[n]

}
.

(88)

A.3 Identifying the obstruction theories

Let P denote P1−h+n(S, β) ∼= Hilbn(C/Hβ). We now have a perfect relative obstruction the-
ory E• for P/Hβ by (88), and ordinary and reduced perfect obstruction theories F •, F •red for Hβ

(Proposition A.2) when condition (2) holds.

We would like to combine them to give ordinary and perfect absolute obstruction theories
for P under condition (2), and to know that they coincide with the ordinary and reduced perfect
obstruction theories E•, E•red of Proposition 3.4 when condition (3) is also satisfied.

That is, we want commutative diagrams of exact triangles:

E• //

��

E• //

��

F •[1]

��

and E•red
//

��

E• //

��

F •red[1]

��
LP // LP/Hβ // LHβ [1] LP // LP/Hβ // LHβ [1] .

(89)

We will first define the upper exact triangles, then prove exactness of the lower rows, and finally
turn to commutativity of the resulting squares.
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For ease of exposition, in this section we will work at one point (F, s) of P at a time. As
in the rest of the paper, all of the arguments extend over the whole family P in the usual way,
modulo more cumbersome notation.

Proposition A.3. The obstruction theory E• = (RHom(I•, F ))∨ of Proposition 3.4 sits in a
natural exact triangle with the relative obstruction theory E• of P/Hβ (88) and the obstruction
theory F • (79) for Hβ:

F • −→ E• −→ E•.

To prove this we need to recall from [PT10, Appendix B] the construction of the isomorphism
between the moduli space of stable pairs and the relative Hilbert scheme of points on the fibres
of C,

P1−h+n(S, β) ∼= Hilbn(C/Hβ) . (90)

Given a pair (F, s) with scheme-theoretic support C ∈ Hβ, we dualise

0 −→ OC −→ F −→ Q −→ 0

considered as sheaves and maps of sheaves on C. That is, applying ( · )∗ := HomC( · ,OC) gives

0 −→ F ∗ −→ OC −→ E xt1C(Q,OC) −→ 0 ,

with all higher Ext sheaves zero [PT10, Proposition B.5]. Therefore F ∗ is an ideal sheaf on C;
denoting the corresponding subscheme by Z ⊂ C we can write the above sequence as

0 −→ IZ⊂C −→ OC −→ OZ −→ 0 .

Then Z ∈ HilbnC defines our point (Z,C) ∈ Hilbn(C/Hβ).

Lemma A.4. The derived dual of i∗F is i∗(IZ⊂C)(C)[−1]. The derived dual of the complex
I• := {OS

s−→ i∗F} is the ideal sheaf of Z ⊂ S twisted by the line bundle OS(C):

(I•)∨ ∼= IZ(C) .

Proof. Since C is a Cartier divisor in S, it is Gorenstein with canonical bundle KS(C)|C . There-
fore Serre duality for the inclusion i : C ↪→ S gives

(i∗F )∨ = RHom(i∗F,OS) ∼= i∗RHom(F, i!OS) ∼= i∗RHom(F,OC(C)[−1])
∼= i∗(F

∗)(C)[−1] ∼= i∗(IZ⊂C)(C)[−1] .

Dualising the commutative diagram of exact triangles

OS(−C)
sC //

��

OS // OC
s
��

I• // OS s // i∗F
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yields

OS
sC // OS(C) // OC(C)

OS // (I•)∨ //

OO

i∗IZ⊂C(C) .

OO

The top row is the obvious exact sequence defined by the canonical extension class in
Ext1(OC(C),OS). Pulling this back via the right-hand arrow i∗IZ⊂C(C) → OC(C) gives the
extension class in Ext1(i∗IZ⊂C ,OS) of the bottom row. Therefore (I•)∨ is the kernel of the in-
duced map from OS(C) to the cokernel of the right-hand arrow. Since this arrow is the canonical
inclusion, it has quotient OZ(C) and (I•)∨ is IZ(C) as claimed.

Proof of Proposition A.3. By Lemma A.4, the ordinary deformation-obstruction complex (E•)∨

at (F, s) ∈ P can be written

(E•)∨ := RHom(I•, F ) = RHom(F∨, (I•)∨) = RHomS(i∗IZ⊂C ,IZ)[1] (91)

at (Z ⊂ C) ∈ P .

Via the obvious exact sequences we get a commuting diagram of exact triangles (in which
some i∗s are suppressed, and all RHoms are taken on S),

RHom(OC ,OZ)[−1] //

��

RHom(OC ,IZ) //

��

RHom(OC ,OS)

��
RHom(i∗IZ ,OZ)[−1] //

��

RHom(i∗IZ ,IZ) //

��

RHom(i∗IZ ,OS)

��
RHom(OZ ,OZ) // RHom(OZ ,IZ)[1] // RHom(OZ ,OS)[1] .

(92)

The top-degree cohomologies of the terms in the bottom right and bottom left corners are the
same via the induced homomorphism between them:

E xt2(OZ ,OS)
∼−→ E xt2(OZ ,OZ) . (93)

(For instance, this may be seen by using Serre duality and the fact that the obvious map
Hom(OZ ,OZ) → Hom(OS ,OZ) is an isomorphism.) The same goes for the lowest degree co-
homologies of the bottom left and top left terms:

Hom(OZ ,OZ)
∼−→Hom(OC ,OZ) . (94)

Thus, in the central horizontal exact triangle, we can take the cone on the map to (93), then the
cone on the map from (94), to yield a new exact triangle

E xt1(OZ ,OZ)

��
E xt1(OC ,OZ)

 // RHom(i∗IZ ,IZ)[1] // RHom(OC ,OS)[1] .
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The vertical arrow is constructed from the restriction map OC → OZ . Identifying E xt1(OC ,OZ)
with OZ(C) using sC , it becomes the derivative of sC . Similarly, we can identify the last term
RHom(OC ,OS) with OC(C)[−1]. On applying RΓ (or, in the family case, pushing down to the
moduli space P ) we get the exact triangle

TZS
[n]

��
O(C)[n]

 // RHom(i∗IZ ,IZ)[1] // RΓ(OC(C)) ,

with first term (E•)∨ of (88). By (91) we have the required exact triangle

(E•)∨ // (E•)∨ // (F •)∨ .

Since we have been working with truncated, rather than full, cotangent complexes, we have
to be careful about exactness.

Lemma A.5. The canonical maps of truncated cotangent complexes

LHβ −→ LP −→ LP/Hβ
define an exact triangle.

Proof. We need to show that the following triangle of complexes{
I/I2|P → ΩHγ |P

}
−→

{
I /I 2 → (ΩS[n] ⊕ ΩHγ )|P

}
−→

{
J /J 2 → ΩS[n] |P

}
is exact. Here the ideal of Hβ ⊂ Hγ is denoted by I, the ideal of P ⊂ S[n]×Hγ is I , and the ideal
of P ⊂ S[n] ×Hβ is J := I /(I ∩ I). The arrows are the obvious ones, and we have suppressed
some (flat) pullbacks. We therefore need to prove the exactness of

0→ I/(I2 + I ·I )→ I /I 2 → J /J 2 → 0

on the left. That is, since I2 + I ·I = I ·I , we need to show that

I ∩I 2 ⊆ I ·I . (95)

First work on the open set in P ∼= Hilbn(C/Hβ) 3 (C,Z) where the zero-dimensional sub-
scheme Z is disjoint from A∩C. (Recall that A was a fixed ample divisor used to embed Hβ into
Hγ (74).) Then in a neighbourhood in S[n] ×Hγ of this open set, we have I = I + J , where J
is the ideal sheaf of the subscheme

Hilbn(D/Hγ) ⊂ S[n] ×Hγ . (96)

(In other words, the locus of pairs (Z ⊂ C) is locally isomorphic to the locus of pairs (Z ⊂ (A∪C))
so long as Z stays away from A ∩ C.) But the relative Hilbert scheme (96) is flat over Hγ : as
in [AIK77], the fact that each fibre has dimension n follows immediately from the fact that
the punctual Hilbert scheme of length r subschemes supported at a single point of a smooth
surface has dimension r − 1 [Iar72], so for a curve in a surface it has dimension at most (r − 1).
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Then, since each fibre is cut out of the smooth 2n-dimensional space S[n] by a section of a rank
n vector bundle, this section is regular and the associated Koszul resolution exact. Thus the
Hilbert polynomial of each fibre can be calculated in terms of the Chern classes of this bundle
on S, independently of the fibre. This implies flatness.

Furthermore, I is pulled back from Hγ , so I ∩ J2 ⊆ I ∩ J = I · J . Therefore

I ∩I 2 = I ∩ (I + J)2 = I ∩ (I2 + I · J + J2) = I2 + I · J + I ∩ J2 ⊆ I2 + I · J = I ·I ,

giving (95).

This gives exactness over an open set of P . By changing the divisor A we can cover P with
open sets on which we get exactness. Since exactness can be checked locally, we are done.

Combining the map E• → F •[1] of Proposition A.3 with the maps (88) and (81), we get the
square

E• //

��

F •[1]

��
LP/Hβ // LHβ [1] .

(97)

Lemma A.6. The square (97) commutes.

Proof. We use the following general fact. Suppose that a scheme P/B over a (possibly singular)
base B is cut out of the product A×B by a section σ of a vector bundle E. If we further assume
that A is smooth then we get a natural induced relative perfect obstruction theory

E•

��

' E∗|P dσ //

σ
��

ΩA|P

LP/B ' J /J 2 d // ΩA×B/B|P ,

where J ⊂ OA×B is the ideal sheaf of P .

Then the composition of the maps E• → LP/B → LB[1] factors through the obvious map
E• → E∗|P [1] via the map

E∗|P −→ LB ,
which is the composition

E∗|P
σ−→ J /J 2 = LP/(A×B)[−1] −→ LA×B|P −→ LB .

Here the last map is just projection onto the second factor of LA ⊕ LB, and as usual we have
suppressed some pull back maps.

We use this in the setting of Section A.2, with A = S[n], B = Hβ, E = O(C)[n] and σ = σC .
See (87). Then going anticlockwise round (97) gives the composition

E• −→ (O(C)[n])∗[1]
σC−→ J /J 2[1] −→ (LS[n] ⊕ LHβ )|P [1] −→ LHβ [1] . (98)
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The second arrow is given by the canonical section σC of O(C)[n] (87). This is pushed down from
the universal zero-dimensional subscheme Z inside the universal curve C over P :

Z

π

��

� � // C
π

~~

� � // P × S � � // S[n] ×Hβ × S

P .

Namely, σC = π∗(sC |Z), where sC is the section of O(C) cutting out C ⊂ S[n] ×Hβ × S.

We have the commutative diagram

OC(−C)

��

IC/I
2
C

//

��

LS[n]×Hβ×S |C //

��

π∗LHβ |C

��
OZ(−C) sC // IZ/I

2
Z

// LS[n]×Hβ×S |Z // π∗LHβ |Z ,

where in the bottom row we have suppressed the pushforward map from Z to C. Composing
horizontally and dualising, by adjunction we get the commutative diagram

L∨Hβ
// Rπ∗OC(C)

��
L∨Hβ

// π∗OZ(C) ,

(99)

with bottom row induced by π∗(sC |Z) = σC . Dualising this bottom row gives the composition of
the second, third and fourth arrows in (98).

Going clockwise round (97) gives

E• −→
(
RπH∗OC(C)

)∨
[1] −→ LHβ [1] ,

where the second arrow is the dual of (81). But this is the top row of (99), by construction. The
first arrow comes from Proposition A.3; the top row of (92) shows it factors through

E• −→ (O(C)[n])∗[1] −→
(
Rπ∗OC(C)

)∨
[1] ,

where the second arrow is the dual of Rπ∗OC(C) → Rπ∗OZ(C) = O(C)[n]. But this is the right-
hand vertical arrow in (99). By the commutativity of (99), then, the two compositions are the
same.

It follows that Cone
(
E•[−1] → F •

)
maps to LP giving a perfect obstruction theory. By

Proposition A.3 this perfect obstruction theory is the complex

RHom(I•, F )∨

at a point (F, s) ∈ P . We have not proven that the map from this complex to LP is the same
as the one given by the perfect obstruction theory of Proposition 3.4. Though they are surely
the same, we don’t need this to deduce that the resulting virtual cycles are the same since they
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depend only on the K-theory class of the two-term complex. What we really want, however, is
the same result for the reduced cycles.

The dual semi-regularity map of (79) applied to the exact triangle of Proposition A.3 gives
the diagram

H2,0(S)[1]

��

H2,0(S)[1]

��
F • // E• // E•.

(100)

Taking cones gives

F •red
// E•red

// E•, (101)

as desired in (89). Since F •red and E• are perfect two-term complexes, so is E•red.

By Proposition A.2 the map F • → LHβ (81) descends to F •red → LHβ to give the perfect
obstruction theory of (77). Therefore by Lemma A.6 the perfect relative obstruction theory
E• → LP/Hβ of (88) fits into a commutative diagram

E•red
//

��

E• //

��

F •red[1]

��
LP // LP/Hβ // LHβ [1] .

We can fill in the dotted arrow, giving (by the long exact sequence in cohomology) a perfect
obstruction theory for P . We have not checked that this is the same as the one given by Proposi-
tion 3.4, though it surely is. But the complexes E•red and (E•X,red|PS )fix have the same K-theory
classes, since they sit inside exact triangles with the same objects. This is enough to ensure that
the reduced virtual cycles are the same.

Theorem A.7. The constructions of this appendix define a reduced virtual cycle

[P1−h+n(S, β)]red ∈ H2v(P1−h+n(S, β)) , v = h− 1 + n+

∫
β
c1(S) + h0,2(S) ,

whenever condition (2) holds. It coincides with the reduced class (43) when condition (3) also
holds. When condition (72) holds, its pushforward to the smooth ambient space Hγ × S[n] is

ctop(F ) . cn
(
O(D − π∗A)[n]

)
, (102)

where F is the bundle (76).

Proof. Assuming (72), we can summarise the results of this appendix as follows. The perfect
obstruction theory E•red arose from cutting P out of Hγ ×S[n] firstly by a section σ of the vector
bundle F (76) (pulled back from Hγ) followed by a section σC of the bundle O(C)[n] over Hβ×S[n]

(87). The latter bundle extends over Hγ × S[n] as the bundle O(D − π∗SA)[n], even though the
section σC does not. This is enough to give (102).

379



M. Kool, R. P. Thomas

The assumption (72) that H2(L) = 0 for all L ∈ Picβ(S) was required to ensure that the
sheaf F of (76) was a vector bundle on all of Hγ . If instead we impose only condition (2) – that
H2(L) = 0 for all effective L ∈ Picβ(S) – then F is a sheaf on Hγ which is locally free on Hβ. It
is therefore locally free in a neighbourhood of Hβ ⊂ Hγ .

The global description of Hβ as the zero locus of the section σ of F still holds. Since F is a
bundle near Hβ, this is enough to induce the perfect obstruction theory on Hβ. The construction
of the reduced class then follows as before.

Since the perfect obstruction theory E•red has the same K-theory class as (E•X,red|PS )fix, when
condition (3) also holds we get the same reduced cycle as we do from the perfect obstruction
theory of Proposition 3.4.

In [KT14] we use the global description as the zero locus of a section of a bundle to do com-
putations starting from the formula (102). A priori then, these calculations require the stronger
hypothesis (72).
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surfaces. With an appendix by Lothar Göttsche, in Problems in the theory of surfaces and their
classification (Cortona, 1988), Sympos. Math. 32, 33–48, Academic Press, London, 1991.

BuF03 R.-O. Buchweitz and H. Flenner, A semiregularity map for modules and applications to
deformations, Compositio Math. 137 (2003), 135–210. http://dx.doi.org/10.1023/A:

1023999012081
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