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A very general quartic double fourfold

or fivefold is not stably rational

Arnaud Beauville

Abstract

Applying an idea of C. Voisin, we prove that a double cover of P4 or P5 branched along
a very general quartic hypersurface is not stably rational.

1. Introduction

A projective variety X is stably rational if X×Pm is rational for some integer m. A stably rational
variety is unirational; that the converse does not hold was shown by Artin and Mumford [AM72].
Their example is a double covering X of P3

C branched along a quartic symmetroid, a surface
defined by the vanishing of a symmetric 4-by-4 determinant of linear forms. They prove that the
torsion subgroup of H3(X,Z) is nonzero, whereas it is trivial for stably rational varieties.

Unfortunately this method applies only to rather particular varieties, and not to natural
families like Fano threefolds, complete intersections, etc. A more powerful approach was discov-
ered recently by Voisin [Voi15]: the existence of torsion in H3(X,Z) implies the nontriviality of
a certain Chow group, a property which behaves better under specialization. She obtained the
following beautiful consequence.

Theorem (Voisin). A double cover of P3
C branched along a very general quartic surface is not

stably rational.

Here “very general” means that the surface lies outside the union of countably many strict
subvarieties in the space of quartic surfaces in P3.

The aim of this paper is to extend this result in higher dimension, as follows.

Theorem 1. For n = 4 or 5, a double cover of PnC branched along a very general quartic
hypersurface is not stably rational.

These varieties are easily seen to be unirational (Proposition 5); to our knowledge they provide
the first examples of prime (that is, with Picard number 1) Fano manifolds of dimension greater
than 3 which are unirational but not rational.

To prove Theorem 1 we apply Voisin’s method, as extended in [CTP14]. The following is the
statement that we will use ([CTP14, Théorème 1.12] and [Voi15, Remark 1.3]).
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Quartic double 4- or 5-folds are not stably rational

Proposition 1. Let B be a smooth complex variety, let o be a closed point of B, and let
f : X → B be a flat, projective morphism such that the generic fiber of f is smooth and that the
fiber X := Xo is integral and admits a desingularization σ : X̃ → X with the following properties:

a) The torsion subgroup of H3(X̃,Z) is non trivial.

b) The fiber of σ over any point x ∈ X is a smooth rational variety over the residual field κ(x).

Then for a very general point b ∈ B, the fiber Xb is not stably rational.

We stress that condition b) must hold for all points of the scheme X, not only for closed
points. Actually, Proposition 1 gives the (possibly) stronger result that Xb is not retract rational.
Thus in Theorem 1 one can replace “stably rational” by “retract rational”.

Voisin’s theorem follows at once from Proposition 1 by taking for X the Artin–Mumford
example. To treat the higher-dimensional case, we simply take the obvious generalization of that
example, namely a double covering X → Pn branched along a quartic symmetroid. The variety X
is singular, but admits for n = 4 or 5 a simple desingularization1 which satisfies condition b)
of Proposition 1 (see Proposition 3). To check condition a), we view Pn as a linear system L
of quadrics in P3; then the smooth part Xsm of X parametrizes the quadrics of L of rank at
least 3 together with the choice of a system of generatrices. The generatrices in each system are
parametrized by P1, so we get a P1-bundle over Xsm; this provides a 2-torsion class in H3(Xsm,Z).
We will prove that this class comes from a nontrivial torsion class in H3(X̃,Z) (Proposition 4),
whence the result.

2. Linear systems of quadrics

2.1. Let Q be the linear system of quadrics in P3
C. We denote by Qi ⊂ Q the subvariety of

quadrics of rank at most i. We recall some basic properties of these varieties (see, for instance,
[Vai82]):

• We have Q ∼= P9, the subvariety Q3 is a quartic hypersurface in Q, dimQ2 = 6, and
dimQ1 = 3.

• The singular locus of Qi is Qi−1.

• The tangent cone TCq(Q3) at a point q of Q2 \ Q1 is a rank 3 quadric in Tq(Q).

2.2. For n = 3, 4 or 5, let L be an n-dimensional projective subspace of Q. We assume that L
does not meet Q1 and is transverse to Q2—this is the case if L is sufficiently general. We put

∆ := L ∩Q3 and Σ := L ∩Q2 .

Thus ∆ is a quartic hypersurface in L, with singular locus Σ that is smooth, of dimension n− 3.
The tangent cone TCq(∆) at a point q of Σ is a rank 3 quadric in Tq(L) (that is, a cone over
a smooth conic, with vertex a linear space of dimension n− 3).

2.3. Let b : L̃→ L be the blow-up of L along Σ; let E be the exceptional divisor, and let ∆̃ be
the strict transform of ∆.

1The desingularization becomes more complicated for n > 6; see Subsection 5.1.
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Proposition 2. The strict transform ∆̃ is smooth and intersects E transversally, so that C :=
∆̃ ∩ E is smooth. Locally over Σ for the Zariski topology, the embedding C ↪→ E is isomorphic
to the embedding C0 × Σ ↪→ P2 × Σ, where C0 is a smooth conic in P2.

Proof. The fibration E → Σ is the projectivization of the normal bundle N(Σ/L) = TL|Σ/TΣ,
while the fibration C → Σ is the projectivization of the normal cone NC(Σ/∆) = TC(∆)|Σ/TΣ
(observe that at each point q of Σ, the tangent space TqΣ is the vertex of the tangent cone
TCq(∆)). By Subsection 2.2, the fibration C → Σ is a smooth conic bundle. Since C is a Cartier
divisor in ∆̃, this implies that ∆̃ is smooth along C, and therefore everywhere.

There is another natural P1-bundle over Σ: Let C ′ ⊂ P3 × Σ be the variety of pairs (x, q)
with x ∈ Sing(q). The projection C ′ → Σ is a P1-bundle, with fiber Sing(q) above q ∈ Σ. It is
easy to see that it is locally trivial for the Zariski topology. In fact, writing P3 = P(V ), we have
a “universal quadric” qL ∈ H0(L,Sym2V ∗ ⊗ OL(1)) over L, or equivalently a symmetric map

q]L : V ⊗OL → V ∗ ⊗OL(1). The kernel of q]L|Σ is a rank 2 vector bundle K on Σ, and we have

C ′ = PΣ(K). We will now compare the P1-bundles C and C ′.

The projective tangent cone PTCq(∆) to ∆ at a singular point q can be viewed as the variety
of lines in L passing through q and intersecting ∆ with multiplicity at least 3. Let r ∈ L; we
denote by q̇ and ṙ quadratic forms defining q and r, respectively. The line 〈q, r〉 belongs to
PTCq(∆) if and only if det(q̇ + tṙ) is divisible by t3. Choose a decomposition V = W ⊕ Sing(q).
Then q̇ + tṙ is represented by a block matrix(

q̇|W + tṙ|W t(. . .)

t(. . .) tṙ| Sing(q)

)
,

with det(q̇|W ) = λ 6= 0. Thus det(q̇ + tṙ) = t2 λ det(ṙ| Sing(q)) (mod t3), so the above condition is
equivalent to det(ṙ| Sing(q)) = 0, that is, to the quadric r being tangent to Sing(q).

Similarly, the line 〈q, r〉 belongs to PTq(Σ) if and only if all 3-by-3 minors of q̇+tṙ are divisible
by t2; this is equivalent to r containing the line Sing(q). Thus we have a canonical identification
of the projectivization of the normal cone TCq(∆)/Tq(Σ) with Sing(q), mapping a line 〈q, r〉
not tangent to Σ to the point of contact of r with Sing(q). This shows that the P1-bundle C is
isomorphic to C ′, hence locally trivial for the Zariski topology.

Finally, put N := N(Σ/L); let p be the projection C → Σ. The embedding i : C ↪→ E =
PΣ(N) is determined by the line bundle M := i∗OE(1) and the surjective homomorphism
p∗N∗ → M . The latter gives by adjunction an isomorphism N∗ ∼−→ p∗M , so i is isomorphic to
the embedding C ↪→ PΣ

(
(p∗M)∗

)
.

Let q ∈ Σ. Replacing Σ by a Zariski open subset containing q, we may assume that p is
the projection P1 × Σ → Σ and that M is the pull-back of OP1(2). Then p∗M ∼= O3

Σ, and i is
isomorphic to the embedding C0 × Σ ↪→ P2 × Σ in a Zariski neighborhood of q.

3. The double covering

Let π : X → L be the double covering of L branched along the quartic hypersurface ∆. The
variety X is singular along π−1(Σ). The class b∗(∆)− 2E of ∆̃ in Pic(L̃) is divisible by 2, hence
we can form the double covering X̃ → L̃ branched along ∆̃. It gives a resolution σ : X̃ → X of X,
which is an isomorphism outside Σ; the variety Q := σ−1(Σ) is a double covering of E branched
along C.
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Proposition 3. The resolution σ induces a smooth quadric fibration Q→ Σ, locally trivial for
the Zariski topology. In particular, for any q ∈ Σ the fiber σ−1(q) is a smooth quadric, rational
over κ(q).

Proof. Let q ∈ Σ. In view of Proposition 2, replacing Σ by a Zariski open subset containing q, we
may assume that Q is a double covering of P2×Σ branched along C0×Σ. Such a double covering is
determined by the branch locus C0×Σ and a line bundleM on P2×Σ such thatM⊗2 ∼= pr∗1OP2(2).
Shrinking Σ again, we may assume M ∼= pr∗1OP2(1); then the covering Q→ P2×Σ is isomorphic
to Q0 × Σ→ P2 × Σ, where Q0 → P2 is the double covering of P2 branched along C0. Since Q0

is a smooth quadric, this implies the proposition.

This gives us condition b) of Proposition 1; we now check condition a).

Proposition 4. The 2-torsion subgroup of H3(X̃,Z) is nontrivial.

Proof. We will prove that the Brauer group Br(X̃) [Gro68] contains a nonzero 2-torsion element.
This group injects into H2(X̃,O∗h), where Oh is the sheaf of holomorphic functions on X̃. Since
H2(X̃,OX̃) = 0, the latter group injects into H3(X̃,Z) by the exponential exact sequence, so
this implies the proposition.

We put U := X̃ \ Q. Let G := G(2, 4) denote the Grassmannian of lines in P3. We consider
the incidence variety I := {(`, q) ∈ G× (L \ Σ) | ` ⊂ q} and the projection p : I → L \ Σ.

The fiber p−1(q) is a disjoint union of two rational curves for q ∈ L\∆ and is a single rational
curve for q ∈ ∆\Σ. Therefore p factors as a P1-fibration ϕ : I → U , followed by the double covering
U → L \ Σ. The P1-bundle ϕ gives a 2-torsion class [ϕ] in the Brauer group Br(U) [Gro68]. We
claim that this class is nonzero.

Suppose first n = 3. If the class of ϕ in Br(U) were zero, the P1-bundle ϕ : I → U would be
a projective bundle. But I is a rational variety, because the projection I → G is birational [Bea83,
§ 9], and we know that X̃ is not stably rational [AM72]. We conclude that [ϕ] 6= 0 in Br(U).

For n = 4 or 5, we choose a general 3-dimensional projective subspace L′ in L, and construct
the corresponding subvarieties U ′ ⊂ U and I ′ := ϕ−1(U ′). The class [ϕ] in Br(U) restricts to [ϕ|I′ ]
in Br(U ′), which is nonzero by the above; thus we find [ϕ] 6= 0 in Br(U) in all cases. We conclude
with the following lemma.

Lemma. The restriction map Br(X̃)→ Br(U) is an isomorphism.

Proof. We consider the quadric fibration f : Q → Σ. The two systems of generatrices of each
fiber form a double covering of Σ which is locally trivial for the Zariski topology (Proposition 3),
hence trivial. We choose one of the two systems. In each fiber the generatrices of this system are
parametrized by P1 and form a P1-fibration g : G → Σ. For each point x of Q there is a unique
generatrix of our system passing through x; this gives again a P1-fibration h : Q→ G such that
g ◦h = f . By Proposition 3 both fibrations are locally trivial for the Zariski topology, hence are
projective bundles.

We claim that we can blow down X̃ along the fibers of h, more precisely, that there exist a com-
pact complex manifold X̄, a map p : X̃ → X̄ and an embedding G ↪→ X̄ such that the diagram

Q �
� //

h
��

X̃

p

��

G �
� // X̄

511



A. Beauville

is obtained by blowing up G in X̄. According to the Fujiki–Nakano criterion [FN71], it suffices
to prove that the restriction of the line bundle OX̃(Q) to a fiber ` := h−1(q) of h has degree −1.

We have KQ|`
∼= KQq |`

∼= O`(−2) . Recall that X̃ was obtained by first taking the blow-

up b : L̃ → L of L along Σ, with exceptional divisor E, and then taking the double covering
d : X̃ → L̃ branched along the surface ∆̃ ∈ |b∗∆− 2E|. Then

KL̃
∼= b∗OL(−n− 1)(2E) and KX̃

∼= d∗b∗OL(−n+ 1)(Q) ;

since ` is contracted by b◦d, we find KX̃ |`
∼= OX̃(Q)|`. Using the adjunction formula we get

KQ|`
∼= KX̃(Q)|`

∼= OX̃(2Q)|`, therefore degOX̃(Q)|` = −1, whence our claim.

Now, we have a commutative diagram

H2(X̄,Q/Z) //

����

H2(U,Q/Z)

����
Br(X̄) // Br(U) ,

where the vertical arrows are surjective; the top horizontal arrow is bijective by the Gysin exact
sequence, because G has codimension 2 in X̄. Therefore the restriction map Br(X̄) → Br(U) is
surjective. Since it is the composition of p∗ : Br(X̄)→ Br(X̃) and the restriction map Br(X̃)→
Br(U), it follows that the latter is surjective; but it is also injective since both Brauer groups
inject into the Brauer group of the function field C(X̃); see [Gro68, II, Corollaire 1.10].

Thus our desingularization X̃ → X satisfies the conditions stated in Proposition 1. Theo-
rem 1 follows by taking for B the space of quartic hypersurfaces in L = Pn, for o ∈ B the
point corresponding to ∆, and for X the family of double coverings of Pn branched along those
hypersurfaces.

4. Unirationality

The following result is classical for n = 3, and the proof extends easily to the general case.

Proposition 5. A double covering of Pn branched along an integral quartic hypersurface is
unirational.

Proof. Let π : X → Pn be the double covering, and let G be the Grassmannian of lines in Pn.
Consider the variety X∗ ⊂ X × G of pairs (x, `) with π(x) ∈ `. The projection p : X∗ → X is
a projective Pn−1-bundle, with fiber at x ∈ X the space of lines passing through π(x).

For (x, `) general in X∗, the curve E := π−1(`) is a smooth genus 1 curve in X passing
through x; there is a unique point f(x, `) ∈ E such that the divisors π∗q + f(x, `), for q ∈ `, are
linearly equivalent to 3x. This defines a rational map f : X∗ 99K X.

Let (y, `) be a general point of X∗. On the genus 1 curve π−1(`) there are nine points x
such that 3x is linearly equivalent to π∗q + y for q ∈ `, that is, such that f(x, `) = y. Thus f is
dominant, and a general fiber f−1(y) has dimension n−1; in particular, we have p(f−1(y))  X.

Let P be a general 2-plane in Pn, and let P̃ := π−1(P ) ⊂ X. We consider the restriction fP
of f to p−1(P̃ ). We have p(f−1

P (y)) = P̃ ∩ p(f−1(y))  P̃ . The projection p : f−1
P (y) → P̃ is

generically injective (if f(x, `) = y, then ` = 〈π(x), π(y)〉). Thus dim f−1
P (y) 6 1. It follows that

fP : p−1(P̃ ) 99K X is dominant. But p−1(P̃ ) is a projective bundle over the rational surface P̃ ,
hence is rational, and X is unirational.
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5. Questions

5.1. It might be possible to extend our main result in dimension n = 6, . . . , 9, by taking a
general linear system L ⊂ Q of dimension n. However, for n > 6 this linear system contains
rank 1 quadrics, which produce triple points of ∆. The desingularization becomes much more
intricate; we do not know whether the conditions a) and b) of Proposition 1 still hold.

5.2. In [CTP14] the authors show that a very general quartic threefold is not stably rational,
by applying Proposition 1 to a singular quartic birational to the Artin–Mumford threefold. This
has been extended by Totaro [Tot15] to very general hypersurfaces of degree at least 2d(n+2)/3e
in Pn+1, in particular to quartic fourfolds, by combining Proposition 1 with an earlier method of
Kollár. It would be interesting to extend the result to very general quartic fivefolds, which are
known to be unirational [CM98].
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(North-Holland, Amsterdam; Masson, Paris, 1968), 46–87.

Tot15 B. Totaro, Hypersurfaces that are not stably rational, J. Amer. Math. Soc., to appear,
arXiv:1502.04040; http://dx.doi.org/10.1090/jams/840.

Vai82 I. Vainsencher, Schubert calculus for complete quadrics, Enumerative Geometry and Classical
Algebraic Geometry (Nice, 1981), Progr. Math., vol. 24 (Birkhäuser, Boston, MA, 1982), 199–
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